| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							maprnin.1 | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							maprnin.2 | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝑓 : 𝐴 ⟶ 𝐵  →  𝑓  Fn  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							df-f | 
							⊢ ( 𝑓 : 𝐴 ⟶ 𝐶  ↔  ( 𝑓  Fn  𝐴  ∧  ran  𝑓  ⊆  𝐶 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							baibr | 
							⊢ ( 𝑓  Fn  𝐴  →  ( ran  𝑓  ⊆  𝐶  ↔  𝑓 : 𝐴 ⟶ 𝐶 ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							syl | 
							⊢ ( 𝑓 : 𝐴 ⟶ 𝐵  →  ( ran  𝑓  ⊆  𝐶  ↔  𝑓 : 𝐴 ⟶ 𝐶 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							pm5.32i | 
							⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ran  𝑓  ⊆  𝐶 )  ↔  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  𝑓 : 𝐴 ⟶ 𝐶 ) )  | 
						
						
							| 8 | 
							
								2 1
							 | 
							elmap | 
							⊢ ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↔  𝑓 : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							anbi1i | 
							⊢ ( ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∧  ran  𝑓  ⊆  𝐶 )  ↔  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ran  𝑓  ⊆  𝐶 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							fin | 
							⊢ ( 𝑓 : 𝐴 ⟶ ( 𝐵  ∩  𝐶 )  ↔  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  𝑓 : 𝐴 ⟶ 𝐶 ) )  | 
						
						
							| 11 | 
							
								7 9 10
							 | 
							3bitr4ri | 
							⊢ ( 𝑓 : 𝐴 ⟶ ( 𝐵  ∩  𝐶 )  ↔  ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∧  ran  𝑓  ⊆  𝐶 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							abbii | 
							⊢ { 𝑓  ∣  𝑓 : 𝐴 ⟶ ( 𝐵  ∩  𝐶 ) }  =  { 𝑓  ∣  ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∧  ran  𝑓  ⊆  𝐶 ) }  | 
						
						
							| 13 | 
							
								2
							 | 
							inex1 | 
							⊢ ( 𝐵  ∩  𝐶 )  ∈  V  | 
						
						
							| 14 | 
							
								13 1
							 | 
							mapval | 
							⊢ ( ( 𝐵  ∩  𝐶 )  ↑m  𝐴 )  =  { 𝑓  ∣  𝑓 : 𝐴 ⟶ ( 𝐵  ∩  𝐶 ) }  | 
						
						
							| 15 | 
							
								
							 | 
							df-rab | 
							⊢ { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ran  𝑓  ⊆  𝐶 }  =  { 𝑓  ∣  ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∧  ran  𝑓  ⊆  𝐶 ) }  | 
						
						
							| 16 | 
							
								12 14 15
							 | 
							3eqtr4i | 
							⊢ ( ( 𝐵  ∩  𝐶 )  ↑m  𝐴 )  =  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ran  𝑓  ⊆  𝐶 }  |