Step |
Hyp |
Ref |
Expression |
1 |
|
maprnin.1 |
⊢ 𝐴 ∈ V |
2 |
|
maprnin.2 |
⊢ 𝐵 ∈ V |
3 |
|
ffn |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 Fn 𝐴 ) |
4 |
|
df-f |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐶 ↔ ( 𝑓 Fn 𝐴 ∧ ran 𝑓 ⊆ 𝐶 ) ) |
5 |
4
|
baibr |
⊢ ( 𝑓 Fn 𝐴 → ( ran 𝑓 ⊆ 𝐶 ↔ 𝑓 : 𝐴 ⟶ 𝐶 ) ) |
6 |
3 5
|
syl |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ( ran 𝑓 ⊆ 𝐶 ↔ 𝑓 : 𝐴 ⟶ 𝐶 ) ) |
7 |
6
|
pm5.32i |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ran 𝑓 ⊆ 𝐶 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑓 : 𝐴 ⟶ 𝐶 ) ) |
8 |
2 1
|
elmap |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) |
9 |
8
|
anbi1i |
⊢ ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ran 𝑓 ⊆ 𝐶 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ran 𝑓 ⊆ 𝐶 ) ) |
10 |
|
fin |
⊢ ( 𝑓 : 𝐴 ⟶ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑓 : 𝐴 ⟶ 𝐶 ) ) |
11 |
7 9 10
|
3bitr4ri |
⊢ ( 𝑓 : 𝐴 ⟶ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ran 𝑓 ⊆ 𝐶 ) ) |
12 |
11
|
abbii |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ ( 𝐵 ∩ 𝐶 ) } = { 𝑓 ∣ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ran 𝑓 ⊆ 𝐶 ) } |
13 |
2
|
inex1 |
⊢ ( 𝐵 ∩ 𝐶 ) ∈ V |
14 |
13 1
|
mapval |
⊢ ( ( 𝐵 ∩ 𝐶 ) ↑m 𝐴 ) = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ ( 𝐵 ∩ 𝐶 ) } |
15 |
|
df-rab |
⊢ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ran 𝑓 ⊆ 𝐶 } = { 𝑓 ∣ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ran 𝑓 ⊆ 𝐶 ) } |
16 |
12 14 15
|
3eqtr4i |
⊢ ( ( 𝐵 ∩ 𝐶 ) ↑m 𝐴 ) = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ran 𝑓 ⊆ 𝐶 } |