Metamath Proof Explorer


Theorem mapsn

Description: The value of set exponentiation with a singleton exponent. Theorem 98 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Proof shortened by AV, 17-Jul-2022)

Ref Expression
Hypotheses map0.1 𝐴 ∈ V
map0.2 𝐵 ∈ V
Assertion mapsn ( 𝐴m { 𝐵 } ) = { 𝑓 ∣ ∃ 𝑦𝐴 𝑓 = { ⟨ 𝐵 , 𝑦 ⟩ } }

Proof

Step Hyp Ref Expression
1 map0.1 𝐴 ∈ V
2 map0.2 𝐵 ∈ V
3 id ( 𝐴 ∈ V → 𝐴 ∈ V )
4 2 a1i ( 𝐴 ∈ V → 𝐵 ∈ V )
5 3 4 mapsnd ( 𝐴 ∈ V → ( 𝐴m { 𝐵 } ) = { 𝑓 ∣ ∃ 𝑦𝐴 𝑓 = { ⟨ 𝐵 , 𝑦 ⟩ } } )
6 1 5 ax-mp ( 𝐴m { 𝐵 } ) = { 𝑓 ∣ ∃ 𝑦𝐴 𝑓 = { ⟨ 𝐵 , 𝑦 ⟩ } }