Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The mapping operation
mapsn
Metamath Proof Explorer
Description: The value of set exponentiation with a singleton exponent. Theorem 98
of Suppes p. 89. (Contributed by NM , 10-Dec-2003) (Proof shortened by AV , 17-Jul-2022)
Ref
Expression
Hypotheses
map0.1
⊢ 𝐴 ∈ V
map0.2
⊢ 𝐵 ∈ V
Assertion
mapsn
⊢ ( 𝐴 ↑m { 𝐵 } ) = { 𝑓 ∣ ∃ 𝑦 ∈ 𝐴 𝑓 = { 〈 𝐵 , 𝑦 〉 } }
Proof
Step
Hyp
Ref
Expression
1
map0.1
⊢ 𝐴 ∈ V
2
map0.2
⊢ 𝐵 ∈ V
3
id
⊢ ( 𝐴 ∈ V → 𝐴 ∈ V )
4
2
a1i
⊢ ( 𝐴 ∈ V → 𝐵 ∈ V )
5
3 4
mapsnd
⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m { 𝐵 } ) = { 𝑓 ∣ ∃ 𝑦 ∈ 𝐴 𝑓 = { 〈 𝐵 , 𝑦 〉 } } )
6
1 5
ax-mp
⊢ ( 𝐴 ↑m { 𝐵 } ) = { 𝑓 ∣ ∃ 𝑦 ∈ 𝐴 𝑓 = { 〈 𝐵 , 𝑦 〉 } }