Step |
Hyp |
Ref |
Expression |
1 |
|
mapsncnv.s |
⊢ 𝑆 = { 𝑋 } |
2 |
|
mapsncnv.b |
⊢ 𝐵 ∈ V |
3 |
|
mapsncnv.x |
⊢ 𝑋 ∈ V |
4 |
|
snex |
⊢ { 𝑋 } ∈ V |
5 |
2 4
|
elmap |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m { 𝑋 } ) ↔ 𝐹 : { 𝑋 } ⟶ 𝐵 ) |
6 |
3
|
fsn2 |
⊢ ( 𝐹 : { 𝑋 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
7 |
6
|
simprbi |
⊢ ( 𝐹 : { 𝑋 } ⟶ 𝐵 → 𝐹 = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) |
8 |
1
|
xpeq1i |
⊢ ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) = ( { 𝑋 } × { ( 𝐹 ‘ 𝑋 ) } ) |
9 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
10 |
3 9
|
xpsn |
⊢ ( { 𝑋 } × { ( 𝐹 ‘ 𝑋 ) } ) = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } |
11 |
8 10
|
eqtr2i |
⊢ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) |
12 |
7 11
|
eqtrdi |
⊢ ( 𝐹 : { 𝑋 } ⟶ 𝐵 → 𝐹 = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) ) |
13 |
5 12
|
sylbi |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m { 𝑋 } ) → 𝐹 = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) ) |
14 |
1
|
oveq2i |
⊢ ( 𝐵 ↑m 𝑆 ) = ( 𝐵 ↑m { 𝑋 } ) |
15 |
13 14
|
eleq2s |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝑆 ) → 𝐹 = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) ) |