| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ixpsnf1o.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( { 𝐼 } × { 𝑥 } ) ) |
| 2 |
1
|
ixpsnf1o |
⊢ ( 𝐼 ∈ 𝑊 → 𝐹 : 𝐴 –1-1-onto→ X 𝑦 ∈ { 𝐼 } 𝐴 ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐴 –1-1-onto→ X 𝑦 ∈ { 𝐼 } 𝐴 ) |
| 4 |
|
snex |
⊢ { 𝐼 } ∈ V |
| 5 |
|
ixpconstg |
⊢ ( ( { 𝐼 } ∈ V ∧ 𝐴 ∈ 𝑉 ) → X 𝑦 ∈ { 𝐼 } 𝐴 = ( 𝐴 ↑m { 𝐼 } ) ) |
| 6 |
5
|
eqcomd |
⊢ ( ( { 𝐼 } ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ↑m { 𝐼 } ) = X 𝑦 ∈ { 𝐼 } 𝐴 ) |
| 7 |
4 6
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m { 𝐼 } ) = X 𝑦 ∈ { 𝐼 } 𝐴 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐴 ↑m { 𝐼 } ) = X 𝑦 ∈ { 𝐼 } 𝐴 ) |
| 9 |
8
|
f1oeq3d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐹 : 𝐴 –1-1-onto→ ( 𝐴 ↑m { 𝐼 } ) ↔ 𝐹 : 𝐴 –1-1-onto→ X 𝑦 ∈ { 𝐼 } 𝐴 ) ) |
| 10 |
3 9
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐴 –1-1-onto→ ( 𝐴 ↑m { 𝐼 } ) ) |