Metamath Proof Explorer


Theorem mapsnf1o

Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis ixpsnf1o.f 𝐹 = ( 𝑥𝐴 ↦ ( { 𝐼 } × { 𝑥 } ) )
Assertion mapsnf1o ( ( 𝐴𝑉𝐼𝑊 ) → 𝐹 : 𝐴1-1-onto→ ( 𝐴m { 𝐼 } ) )

Proof

Step Hyp Ref Expression
1 ixpsnf1o.f 𝐹 = ( 𝑥𝐴 ↦ ( { 𝐼 } × { 𝑥 } ) )
2 1 ixpsnf1o ( 𝐼𝑊𝐹 : 𝐴1-1-ontoX 𝑦 ∈ { 𝐼 } 𝐴 )
3 2 adantl ( ( 𝐴𝑉𝐼𝑊 ) → 𝐹 : 𝐴1-1-ontoX 𝑦 ∈ { 𝐼 } 𝐴 )
4 snex { 𝐼 } ∈ V
5 ixpconstg ( ( { 𝐼 } ∈ V ∧ 𝐴𝑉 ) → X 𝑦 ∈ { 𝐼 } 𝐴 = ( 𝐴m { 𝐼 } ) )
6 5 eqcomd ( ( { 𝐼 } ∈ V ∧ 𝐴𝑉 ) → ( 𝐴m { 𝐼 } ) = X 𝑦 ∈ { 𝐼 } 𝐴 )
7 4 6 mpan ( 𝐴𝑉 → ( 𝐴m { 𝐼 } ) = X 𝑦 ∈ { 𝐼 } 𝐴 )
8 7 adantr ( ( 𝐴𝑉𝐼𝑊 ) → ( 𝐴m { 𝐼 } ) = X 𝑦 ∈ { 𝐼 } 𝐴 )
9 8 f1oeq3d ( ( 𝐴𝑉𝐼𝑊 ) → ( 𝐹 : 𝐴1-1-onto→ ( 𝐴m { 𝐼 } ) ↔ 𝐹 : 𝐴1-1-ontoX 𝑦 ∈ { 𝐼 } 𝐴 ) )
10 3 9 mpbird ( ( 𝐴𝑉𝐼𝑊 ) → 𝐹 : 𝐴1-1-onto→ ( 𝐴m { 𝐼 } ) )