Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapsncnv.s | ⊢ 𝑆 = { 𝑋 } | |
mapsncnv.b | ⊢ 𝐵 ∈ V | ||
mapsncnv.x | ⊢ 𝑋 ∈ V | ||
mapsncnv.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) | ||
Assertion | mapsnf1o2 | ⊢ 𝐹 : ( 𝐵 ↑m 𝑆 ) –1-1-onto→ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsncnv.s | ⊢ 𝑆 = { 𝑋 } | |
2 | mapsncnv.b | ⊢ 𝐵 ∈ V | |
3 | mapsncnv.x | ⊢ 𝑋 ∈ V | |
4 | mapsncnv.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) | |
5 | fvex | ⊢ ( 𝑥 ‘ 𝑋 ) ∈ V | |
6 | 5 4 | fnmpti | ⊢ 𝐹 Fn ( 𝐵 ↑m 𝑆 ) |
7 | snex | ⊢ { 𝑋 } ∈ V | |
8 | 1 7 | eqeltri | ⊢ 𝑆 ∈ V |
9 | snex | ⊢ { 𝑦 } ∈ V | |
10 | 8 9 | xpex | ⊢ ( 𝑆 × { 𝑦 } ) ∈ V |
11 | 1 2 3 4 | mapsncnv | ⊢ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) |
12 | 10 11 | fnmpti | ⊢ ◡ 𝐹 Fn 𝐵 |
13 | dff1o4 | ⊢ ( 𝐹 : ( 𝐵 ↑m 𝑆 ) –1-1-onto→ 𝐵 ↔ ( 𝐹 Fn ( 𝐵 ↑m 𝑆 ) ∧ ◡ 𝐹 Fn 𝐵 ) ) | |
14 | 6 12 13 | mpbir2an | ⊢ 𝐹 : ( 𝐵 ↑m 𝑆 ) –1-1-onto→ 𝐵 |