Metamath Proof Explorer


Theorem mapsnf1o2

Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses mapsncnv.s 𝑆 = { 𝑋 }
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsncnv.f 𝐹 = ( 𝑥 ∈ ( 𝐵m 𝑆 ) ↦ ( 𝑥𝑋 ) )
Assertion mapsnf1o2 𝐹 : ( 𝐵m 𝑆 ) –1-1-onto𝐵

Proof

Step Hyp Ref Expression
1 mapsncnv.s 𝑆 = { 𝑋 }
2 mapsncnv.b 𝐵 ∈ V
3 mapsncnv.x 𝑋 ∈ V
4 mapsncnv.f 𝐹 = ( 𝑥 ∈ ( 𝐵m 𝑆 ) ↦ ( 𝑥𝑋 ) )
5 fvex ( 𝑥𝑋 ) ∈ V
6 5 4 fnmpti 𝐹 Fn ( 𝐵m 𝑆 )
7 snex { 𝑋 } ∈ V
8 1 7 eqeltri 𝑆 ∈ V
9 snex { 𝑦 } ∈ V
10 8 9 xpex ( 𝑆 × { 𝑦 } ) ∈ V
11 1 2 3 4 mapsncnv 𝐹 = ( 𝑦𝐵 ↦ ( 𝑆 × { 𝑦 } ) )
12 10 11 fnmpti 𝐹 Fn 𝐵
13 dff1o4 ( 𝐹 : ( 𝐵m 𝑆 ) –1-1-onto𝐵 ↔ ( 𝐹 Fn ( 𝐵m 𝑆 ) ∧ 𝐹 Fn 𝐵 ) )
14 6 12 13 mpbir2an 𝐹 : ( 𝐵m 𝑆 ) –1-1-onto𝐵