Step |
Hyp |
Ref |
Expression |
1 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) → 𝑓 : 𝐶 ⟶ 𝐴 ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝑓 : 𝐶 ⟶ 𝐴 ) |
3 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝐴 ⊆ 𝐵 ) |
4 |
2 3
|
fssd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝑓 : 𝐶 ⟶ 𝐵 ) |
5 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝐵 ∈ 𝑉 ) |
6 |
|
elmapex |
⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) |
7 |
6
|
simprd |
⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) → 𝐶 ∈ V ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝐶 ∈ V ) |
9 |
5 8
|
elmapd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐶 ) ↔ 𝑓 : 𝐶 ⟶ 𝐵 ) ) |
10 |
4 9
|
mpbird |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝑓 ∈ ( 𝐵 ↑m 𝐶 ) ) |
11 |
10
|
ex |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) → 𝑓 ∈ ( 𝐵 ↑m 𝐶 ) ) ) |
12 |
11
|
ssrdv |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |