Step |
Hyp |
Ref |
Expression |
1 |
|
mapssbi.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
mapssbi.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
mapssbi.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑍 ) |
4 |
|
mapssbi.n |
⊢ ( 𝜑 → 𝐶 ≠ ∅ ) |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ 𝑊 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
7 |
|
mapss |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
9 |
8
|
ex |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) ) |
10 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
11 |
|
nssrex |
⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
12 |
11
|
biimpi |
⊢ ( ¬ 𝐴 ⊆ 𝐵 → ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ⊆ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
14 |
|
fconst6g |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐶 × { 𝑥 } ) : 𝐶 ⟶ 𝐴 ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 × { 𝑥 } ) : 𝐶 ⟶ 𝐴 ) |
16 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐶 × { 𝑥 } ) ∈ ( 𝐴 ↑m 𝐶 ) ↔ ( 𝐶 × { 𝑥 } ) : 𝐶 ⟶ 𝐴 ) ) |
17 |
1 3 16
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 × { 𝑥 } ) ∈ ( 𝐴 ↑m 𝐶 ) ↔ ( 𝐶 × { 𝑥 } ) : 𝐶 ⟶ 𝐴 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐶 × { 𝑥 } ) ∈ ( 𝐴 ↑m 𝐶 ) ↔ ( 𝐶 × { 𝑥 } ) : 𝐶 ⟶ 𝐴 ) ) |
19 |
15 18
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 × { 𝑥 } ) ∈ ( 𝐴 ↑m 𝐶 ) ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝐶 × { 𝑥 } ) ∈ ( 𝐴 ↑m 𝐶 ) ) |
21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) → 𝐶 ∈ 𝑍 ) |
22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) → 𝐵 ∈ 𝑊 ) |
23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) → 𝐶 ≠ ∅ ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) → ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) |
25 |
21 22 23 24
|
snelmap |
⊢ ( ( 𝜑 ∧ ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) → 𝑥 ∈ 𝐵 ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) → 𝑥 ∈ 𝐵 ) |
27 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) → ¬ 𝑥 ∈ 𝐵 ) |
28 |
26 27
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐵 ) → ¬ ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) |
29 |
28
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ¬ ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) |
30 |
|
nelss |
⊢ ( ( ( 𝐶 × { 𝑥 } ) ∈ ( 𝐴 ↑m 𝐶 ) ∧ ¬ ( 𝐶 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐶 ) ) → ¬ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
31 |
20 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ¬ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
32 |
31
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → ¬ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → ¬ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) ) ) |
34 |
33
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ⊆ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 → ¬ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) ) |
35 |
13 34
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ⊆ 𝐵 ) → ¬ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
36 |
35
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) ∧ ¬ 𝐴 ⊆ 𝐵 ) → ¬ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
37 |
10 36
|
condan |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) → 𝐴 ⊆ 𝐵 ) |
38 |
37
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) → 𝐴 ⊆ 𝐵 ) ) |
39 |
9 38
|
impbid |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) ) |