Metamath Proof Explorer


Theorem mapsspm

Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Assertion mapsspm ( 𝐴m 𝐵 ) ⊆ ( 𝐴pm 𝐵 )

Proof

Step Hyp Ref Expression
1 elmapex ( 𝑓 ∈ ( 𝐴m 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
2 1 simprd ( 𝑓 ∈ ( 𝐴m 𝐵 ) → 𝐵 ∈ V )
3 1 simpld ( 𝑓 ∈ ( 𝐴m 𝐵 ) → 𝐴 ∈ V )
4 elmapi ( 𝑓 ∈ ( 𝐴m 𝐵 ) → 𝑓 : 𝐵𝐴 )
5 fpmg ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓 : 𝐵𝐴 ) → 𝑓 ∈ ( 𝐴pm 𝐵 ) )
6 2 3 4 5 syl3anc ( 𝑓 ∈ ( 𝐴m 𝐵 ) → 𝑓 ∈ ( 𝐴pm 𝐵 ) )
7 6 ssriv ( 𝐴m 𝐵 ) ⊆ ( 𝐴pm 𝐵 )