Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapsspm | ⊢ ( 𝐴 ↑m 𝐵 ) ⊆ ( 𝐴 ↑pm 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 2 | 1 | simprd | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) → 𝐵 ∈ V ) |
| 3 | 1 | simpld | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) → 𝐴 ∈ V ) |
| 4 | elmapi | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) → 𝑓 : 𝐵 ⟶ 𝐴 ) | |
| 5 | fpmg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ) | |
| 6 | 2 3 4 5 | syl3anc | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) → 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ) |
| 7 | 6 | ssriv | ⊢ ( 𝐴 ↑m 𝐵 ) ⊆ ( 𝐴 ↑pm 𝐵 ) |