Metamath Proof Explorer


Theorem mapval

Description: The value of set exponentiation (inference version). ( A ^m B ) is the set of all functions that map from B to A . Definition 10.24 of Kunen p. 24. (Contributed by NM, 8-Dec-2003)

Ref Expression
Hypotheses mapval.1 𝐴 ∈ V
mapval.2 𝐵 ∈ V
Assertion mapval ( 𝐴m 𝐵 ) = { 𝑓𝑓 : 𝐵𝐴 }

Proof

Step Hyp Ref Expression
1 mapval.1 𝐴 ∈ V
2 mapval.2 𝐵 ∈ V
3 mapvalg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴m 𝐵 ) = { 𝑓𝑓 : 𝐵𝐴 } )
4 1 2 3 mp2an ( 𝐴m 𝐵 ) = { 𝑓𝑓 : 𝐵𝐴 }