Step |
Hyp |
Ref |
Expression |
1 |
|
ovexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∈ V ) |
2 |
|
ovexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ∈ V ) |
3 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) → 𝑓 : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) |
4 |
3
|
ffvelrnda |
⊢ ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝐴 ↑m 𝐵 ) ) |
5 |
|
elmapi |
⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝑓 ‘ 𝑦 ) : 𝐵 ⟶ 𝐴 ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑓 ‘ 𝑦 ) : 𝐵 ⟶ 𝐴 ) |
7 |
6
|
ffvelrnda |
⊢ ( ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ 𝐴 ) |
8 |
7
|
an32s |
⊢ ( ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ 𝐴 ) |
9 |
8
|
ralrimiva |
⊢ ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ 𝐴 ) |
10 |
9
|
ralrimiva |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ 𝐴 ) |
11 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
12 |
11
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) |
13 |
10 12
|
sylib |
⊢ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) |
14 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) |
15 |
|
xpexg |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 × 𝐶 ) ∈ V ) |
16 |
15
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 × 𝐶 ) ∈ V ) |
17 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 × 𝐶 ) ∈ V ) → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) ) |
18 |
14 16 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) ) |
19 |
13 18
|
syl5ibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) |
20 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) → 𝑔 : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) → 𝑔 : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ) |
22 |
|
fovrn |
⊢ ( ( 𝑔 : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 𝑔 𝑦 ) ∈ 𝐴 ) |
23 |
22
|
3expa |
⊢ ( ( ( 𝑔 : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 𝑔 𝑦 ) ∈ 𝐴 ) |
24 |
23
|
an32s |
⊢ ( ( ( 𝑔 : ( 𝐵 × 𝐶 ) ⟶ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 𝑔 𝑦 ) ∈ 𝐴 ) |
25 |
21 24
|
sylanl1 |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 𝑔 𝑦 ) ∈ 𝐴 ) |
26 |
25
|
fmpttd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) |
27 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ ( 𝐴 ↑m 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) ) |
28 |
27
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ ( 𝐴 ↑m 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ ( 𝐴 ↑m 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) ) |
30 |
26 29
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ ( 𝐴 ↑m 𝐵 ) ) |
31 |
30
|
fmpttd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) |
32 |
31
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) ) |
33 |
|
ovex |
⊢ ( 𝐴 ↑m 𝐵 ) ∈ V |
34 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) |
35 |
|
elmapg |
⊢ ( ( ( 𝐴 ↑m 𝐵 ) ∈ V ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ↔ ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) ) |
36 |
33 34 35
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ↔ ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) ) |
37 |
32 36
|
sylibrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ) ) |
38 |
|
elmapfn |
⊢ ( 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) → 𝑔 Fn ( 𝐵 × 𝐶 ) ) |
39 |
38
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑔 Fn ( 𝐵 × 𝐶 ) ) |
40 |
|
fnov |
⊢ ( 𝑔 Fn ( 𝐵 × 𝐶 ) ↔ 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
41 |
39 40
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
42 |
|
simp3 |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ∈ 𝐶 ) |
43 |
26
|
adantlrl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) |
44 |
43
|
3adant2 |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ) |
45 |
|
simp1l2 |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝐵 ∈ 𝑊 ) |
46 |
|
simp1l1 |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝑉 ) |
47 |
|
fex2 |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) : 𝐵 ⟶ 𝐴 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ V ) |
48 |
44 45 46 47
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ V ) |
49 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
50 |
49
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ∈ V ) → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
51 |
42 48 50
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
52 |
51
|
fveq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ‘ 𝑥 ) ) |
53 |
|
simp2 |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝑥 ∈ 𝐵 ) |
54 |
|
ovex |
⊢ ( 𝑥 𝑔 𝑦 ) ∈ V |
55 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) |
56 |
55
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 𝑔 𝑦 ) ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ‘ 𝑥 ) = ( 𝑥 𝑔 𝑦 ) ) |
57 |
53 54 56
|
sylancl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ‘ 𝑥 ) = ( 𝑥 𝑔 𝑦 ) ) |
58 |
52 57
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 𝑔 𝑦 ) ) |
59 |
58
|
mpoeq3dva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
60 |
41 59
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
61 |
|
eqid |
⊢ 𝐵 = 𝐵 |
62 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
63 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) |
64 |
62 63
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
65 |
64
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
66 |
|
nfmpt1 |
⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
67 |
66
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) |
68 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ) |
69 |
68
|
fveq1d |
⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) |
70 |
69
|
a1d |
⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝑦 ∈ 𝐶 → ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
71 |
67 70
|
ralrimi |
⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) |
72 |
|
eqid |
⊢ 𝐶 = 𝐶 |
73 |
71 72
|
jctil |
⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝐶 = 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
74 |
73
|
a1d |
⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝑥 ∈ 𝐵 → ( 𝐶 = 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
75 |
65 74
|
ralrimi |
⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝐶 = 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
76 |
|
mpoeq123 |
⊢ ( ( 𝐵 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐶 = 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
77 |
61 75 76
|
sylancr |
⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
78 |
77
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ↔ 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
79 |
60 78
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) → 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
80 |
3
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑓 : 𝐶 ⟶ ( 𝐴 ↑m 𝐵 ) ) |
81 |
80
|
feqmptd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
82 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ) |
83 |
82 6
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑓 ‘ 𝑦 ) : 𝐵 ⟶ 𝐴 ) |
84 |
83
|
feqmptd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑓 ‘ 𝑦 ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
85 |
84
|
mpteq2dva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
86 |
81 85
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
87 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
88 |
87
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
89 |
|
eqidd |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → 𝐵 = 𝐵 ) |
90 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
91 |
90
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
92 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 |
93 |
|
fvex |
⊢ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ V |
94 |
11
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ∧ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
95 |
93 94
|
mp3an3 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) |
96 |
|
oveq |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑦 ) ) |
97 |
96
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ↔ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
98 |
95 97
|
syl5ibr |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
99 |
98
|
expcomd |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐶 → ( 𝑥 ∈ 𝐵 → ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
100 |
91 92 99
|
ralrimd |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐶 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
101 |
|
mpteq12 |
⊢ ( ( 𝐵 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
102 |
89 100 101
|
syl6an |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐶 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
103 |
88 102
|
ralrimi |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝐶 ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
104 |
|
mpteq12 |
⊢ ( ( 𝐶 = 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
105 |
72 103 104
|
sylancr |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
106 |
105
|
eqeq2d |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ↔ 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) ) |
107 |
86 106
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → ( 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) → 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ) ) |
108 |
79 107
|
impbid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) ) → ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ↔ 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) |
109 |
108
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑓 ∈ ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) → ( 𝑓 = ( 𝑦 ∈ 𝐶 ↦ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 𝑔 𝑦 ) ) ) ↔ 𝑔 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( ( 𝑓 ‘ 𝑦 ) ‘ 𝑥 ) ) ) ) ) |
110 |
1 2 19 37 109
|
en3d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ↑m 𝐵 ) ↑m 𝐶 ) ≈ ( 𝐴 ↑m ( 𝐵 × 𝐶 ) ) ) |