| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							marep01ma.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							marep01ma.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							marep01ma.r | 
							⊢ 𝑅  ∈  CRing  | 
						
						
							| 4 | 
							
								
							 | 
							marep01ma.0 | 
							⊢  0   =  ( 0g ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							marep01ma.1 | 
							⊢  1   =  ( 1r ‘ 𝑅 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							matrcl | 
							⊢ ( 𝑀  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							simpld | 
							⊢ ( 𝑀  ∈  𝐵  →  𝑁  ∈  Fin )  | 
						
						
							| 9 | 
							
								3
							 | 
							a1i | 
							⊢ ( 𝑀  ∈  𝐵  →  𝑅  ∈  CRing )  | 
						
						
							| 10 | 
							
								
							 | 
							crngring | 
							⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring )  | 
						
						
							| 11 | 
							
								6 5
							 | 
							ringidcl | 
							⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 12 | 
							
								3 10 11
							 | 
							mp2b | 
							⊢  1   ∈  ( Base ‘ 𝑅 )  | 
						
						
							| 13 | 
							
								6 4
							 | 
							ring0cl | 
							⊢ ( 𝑅  ∈  Ring  →   0   ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 14 | 
							
								3 10 13
							 | 
							mp2b | 
							⊢  0   ∈  ( Base ‘ 𝑅 )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							ifcli | 
							⊢ if ( 𝑙  =  𝐼 ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 )  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  if ( 𝑙  =  𝐼 ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑘  ∈  𝑁 )  | 
						
						
							| 18 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑙  ∈  𝑁 )  | 
						
						
							| 19 | 
							
								
							 | 
							id | 
							⊢ ( 𝑀  ∈  𝐵  →  𝑀  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								19 2
							 | 
							eleqtrdi | 
							⊢ ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑀  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 22 | 
							
								1 6
							 | 
							matecl | 
							⊢ ( ( 𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁  ∧  𝑀  ∈  ( Base ‘ 𝐴 ) )  →  ( 𝑘 𝑀 𝑙 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 23 | 
							
								17 18 21 22
							 | 
							syl3anc | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑘 𝑀 𝑙 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 24 | 
							
								16 23
							 | 
							ifcld | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  if ( 𝑘  =  𝐻 ,  if ( 𝑙  =  𝐼 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 25 | 
							
								1 6 2 8 9 24
							 | 
							matbas2d | 
							⊢ ( 𝑀  ∈  𝐵  →  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝐻 ,  if ( 𝑙  =  𝐼 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) )  ∈  𝐵 )  |