Step |
Hyp |
Ref |
Expression |
1 |
|
marep01ma.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
marep01ma.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
marep01ma.r |
⊢ 𝑅 ∈ CRing |
4 |
|
marep01ma.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
marep01ma.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
8 |
7
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
9 |
3
|
a1i |
⊢ ( 𝑀 ∈ 𝐵 → 𝑅 ∈ CRing ) |
10 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
11 |
6 5
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
12 |
3 10 11
|
mp2b |
⊢ 1 ∈ ( Base ‘ 𝑅 ) |
13 |
6 4
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
14 |
3 10 13
|
mp2b |
⊢ 0 ∈ ( Base ‘ 𝑅 ) |
15 |
12 14
|
ifcli |
⊢ if ( 𝑙 = 𝐼 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) |
16 |
15
|
a1i |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑙 = 𝐼 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
17 |
|
simp2 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
18 |
|
simp3 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑙 ∈ 𝑁 ) |
19 |
|
id |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ 𝐵 ) |
20 |
19 2
|
eleqtrdi |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
22 |
1 6
|
matecl |
⊢ ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑘 𝑀 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
23 |
17 18 21 22
|
syl3anc |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑘 𝑀 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
24 |
16 23
|
ifcld |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
25 |
1 6 2 8 9 24
|
matbas2d |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ∈ 𝐵 ) |