Step |
Hyp |
Ref |
Expression |
1 |
|
marepvfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
marepvfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
marepvfval.q |
⊢ 𝑄 = ( 𝑁 matRepV 𝑅 ) |
4 |
|
marepvfval.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
5 |
1 2 3 4
|
marepvval |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → ( ( 𝑀 𝑄 𝐶 ) ‘ 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( ( 𝑀 𝑄 𝐶 ) ‘ 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
7 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝐼 ∈ 𝑁 ) |
8 |
|
simplrr |
⊢ ( ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) ∧ 𝑖 = 𝐼 ) → 𝐽 ∈ 𝑁 ) |
9 |
|
fvexd |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐶 ‘ 𝑖 ) ∈ V ) |
10 |
|
ovexd |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝑖 𝑀 𝑗 ) ∈ V ) |
11 |
9 10
|
ifcld |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ∈ V ) |
12 |
11
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) ) → if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ∈ V ) |
13 |
|
eqeq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 = 𝐾 ↔ 𝐽 = 𝐾 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → ( 𝑗 = 𝐾 ↔ 𝐽 = 𝐾 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝐶 ‘ 𝑖 ) = ( 𝐶 ‘ 𝐼 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → ( 𝐶 ‘ 𝑖 ) = ( 𝐶 ‘ 𝐼 ) ) |
17 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → ( 𝑖 𝑀 𝑗 ) = ( 𝐼 𝑀 𝐽 ) ) |
18 |
14 16 17
|
ifbieq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) = if ( 𝐽 = 𝐾 , ( 𝐶 ‘ 𝐼 ) , ( 𝐼 𝑀 𝐽 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) ) → if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) = if ( 𝐽 = 𝐾 , ( 𝐶 ‘ 𝐼 ) , ( 𝐼 𝑀 𝐽 ) ) ) |
20 |
7 8 12 19
|
ovmpodv2 |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( ( ( 𝑀 𝑄 𝐶 ) ‘ 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝐾 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) → ( 𝐼 ( ( 𝑀 𝑄 𝐶 ) ‘ 𝐾 ) 𝐽 ) = if ( 𝐽 = 𝐾 , ( 𝐶 ‘ 𝐼 ) , ( 𝐼 𝑀 𝐽 ) ) ) ) |
21 |
6 20
|
mpd |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( ( 𝑀 𝑄 𝐶 ) ‘ 𝐾 ) 𝐽 ) = if ( 𝐽 = 𝐾 , ( 𝐶 ‘ 𝐼 ) , ( 𝐼 𝑀 𝐽 ) ) ) |