| Step | Hyp | Ref | Expression | 
						
							| 1 |  | marepvfval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | marepvfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | marepvfval.q | ⊢ 𝑄  =  ( 𝑁  matRepV  𝑅 ) | 
						
							| 4 |  | marepvfval.v | ⊢ 𝑉  =  ( ( Base ‘ 𝑅 )  ↑m  𝑁 ) | 
						
							| 5 | 1 2 3 4 | marepvval0 | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐶  ∈  𝑉 )  →  ( 𝑀 𝑄 𝐶 )  =  ( 𝑘  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝑘 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐶  ∈  𝑉  ∧  𝐾  ∈  𝑁 )  →  ( 𝑀 𝑄 𝐶 )  =  ( 𝑘  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝑘 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐶  ∈  𝑉  ∧  𝐾  ∈  𝑁 )  →  ( ( 𝑀 𝑄 𝐶 ) ‘ 𝐾 )  =  ( ( 𝑘  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝑘 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) ‘ 𝐾 ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑘  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝑘 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) )  =  ( 𝑘  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝑘 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) | 
						
							| 9 |  | eqeq2 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑗  =  𝑘  ↔  𝑗  =  𝐾 ) ) | 
						
							| 10 | 9 | ifbid | ⊢ ( 𝑘  =  𝐾  →  if ( 𝑗  =  𝑘 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) )  =  if ( 𝑗  =  𝐾 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 11 | 10 | mpoeq3dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝑘 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝐾 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) | 
						
							| 12 |  | simp3 | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐶  ∈  𝑉  ∧  𝐾  ∈  𝑁 )  →  𝐾  ∈  𝑁 ) | 
						
							| 13 | 1 2 | matrcl | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( 𝑀  ∈  𝐵  →  𝑁  ∈  Fin ) | 
						
							| 15 | 14 14 | jca | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐶  ∈  𝑉  ∧  𝐾  ∈  𝑁 )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 17 |  | mpoexga | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝐾 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) )  ∈  V ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐶  ∈  𝑉  ∧  𝐾  ∈  𝑁 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝐾 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) )  ∈  V ) | 
						
							| 19 | 8 11 12 18 | fvmptd3 | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐶  ∈  𝑉  ∧  𝐾  ∈  𝑁 )  →  ( ( 𝑘  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝑘 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) ‘ 𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝐾 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) | 
						
							| 20 | 7 19 | eqtrd | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐶  ∈  𝑉  ∧  𝐾  ∈  𝑁 )  →  ( ( 𝑀 𝑄 𝐶 ) ‘ 𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑗  =  𝐾 ,  ( 𝐶 ‘ 𝑖 ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ) |