Step |
Hyp |
Ref |
Expression |
1 |
|
marepvfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
marepvfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
marepvfval.q |
⊢ 𝑄 = ( 𝑁 matRepV 𝑅 ) |
4 |
|
marepvfval.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
5 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
6 |
5
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
7 |
6
|
adantr |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
8 |
7
|
mptexd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ∈ V ) |
9 |
|
fveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ‘ 𝑖 ) = ( 𝐶 ‘ 𝑖 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑐 = 𝐶 ) → ( 𝑐 ‘ 𝑖 ) = ( 𝐶 ‘ 𝑖 ) ) |
11 |
|
oveq |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑐 = 𝐶 ) → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
13 |
10 12
|
ifeq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑐 = 𝐶 ) → if ( 𝑗 = 𝑘 , ( 𝑐 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) = if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) |
14 |
13
|
mpoeq3dv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑐 = 𝐶 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑐 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
15 |
14
|
mpteq2dv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑐 = 𝐶 ) → ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑐 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) = ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
16 |
1 2 3 4
|
marepvfval |
⊢ 𝑄 = ( 𝑚 ∈ 𝐵 , 𝑐 ∈ 𝑉 ↦ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝑐 ‘ 𝑖 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
17 |
15 16
|
ovmpoga |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ∈ V ) → ( 𝑀 𝑄 𝐶 ) = ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
18 |
8 17
|
mpd3an3 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑀 𝑄 𝐶 ) = ( 𝑘 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝑘 , ( 𝐶 ‘ 𝑖 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |