Step |
Hyp |
Ref |
Expression |
1 |
|
marrepfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
marrepfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
marrepfval.q |
⊢ 𝑄 = ( 𝑁 matRRep 𝑅 ) |
4 |
|
marrepfval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
1 2 3 4
|
marrepval |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ) → ( 𝐾 ( 𝑀 𝑄 𝑆 ) 𝐿 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
6 |
5
|
3adant3 |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐾 ( 𝑀 𝑄 𝑆 ) 𝐿 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
7 |
|
simp3l |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝐼 ∈ 𝑁 ) |
8 |
|
simpl3r |
⊢ ( ( ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) ∧ 𝑖 = 𝐼 ) → 𝐽 ∈ 𝑁 ) |
9 |
4
|
fvexi |
⊢ 0 ∈ V |
10 |
|
ifexg |
⊢ ( ( 𝑆 ∈ ( Base ‘ 𝑅 ) ∧ 0 ∈ V ) → if ( 𝑗 = 𝐿 , 𝑆 , 0 ) ∈ V ) |
11 |
9 10
|
mpan2 |
⊢ ( 𝑆 ∈ ( Base ‘ 𝑅 ) → if ( 𝑗 = 𝐿 , 𝑆 , 0 ) ∈ V ) |
12 |
|
ovexd |
⊢ ( 𝑆 ∈ ( Base ‘ 𝑅 ) → ( 𝑖 𝑀 𝑗 ) ∈ V ) |
13 |
11 12
|
ifcld |
⊢ ( 𝑆 ∈ ( Base ‘ 𝑅 ) → if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ∈ V ) |
14 |
13
|
adantl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) → if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ∈ V ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ∈ V ) |
16 |
15
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) ) → if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ∈ V ) |
17 |
|
eqeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 = 𝐾 ↔ 𝐼 = 𝐾 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → ( 𝑖 = 𝐾 ↔ 𝐼 = 𝐾 ) ) |
19 |
|
eqeq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 = 𝐿 ↔ 𝐽 = 𝐿 ) ) |
20 |
19
|
ifbid |
⊢ ( 𝑗 = 𝐽 → if ( 𝑗 = 𝐿 , 𝑆 , 0 ) = if ( 𝐽 = 𝐿 , 𝑆 , 0 ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → if ( 𝑗 = 𝐿 , 𝑆 , 0 ) = if ( 𝐽 = 𝐿 , 𝑆 , 0 ) ) |
22 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → ( 𝑖 𝑀 𝑗 ) = ( 𝐼 𝑀 𝐽 ) ) |
23 |
18 21 22
|
ifbieq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) = if ( 𝐼 = 𝐾 , if ( 𝐽 = 𝐿 , 𝑆 , 0 ) , ( 𝐼 𝑀 𝐽 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) ) → if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) = if ( 𝐼 = 𝐾 , if ( 𝐽 = 𝐿 , 𝑆 , 0 ) , ( 𝐼 𝑀 𝐽 ) ) ) |
25 |
7 8 16 24
|
ovmpodv2 |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( ( 𝐾 ( 𝑀 𝑄 𝑆 ) 𝐿 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) → ( 𝐼 ( 𝐾 ( 𝑀 𝑄 𝑆 ) 𝐿 ) 𝐽 ) = if ( 𝐼 = 𝐾 , if ( 𝐽 = 𝐿 , 𝑆 , 0 ) , ( 𝐼 𝑀 𝐽 ) ) ) ) |
26 |
6 25
|
mpd |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝐾 ( 𝑀 𝑄 𝑆 ) 𝐿 ) 𝐽 ) = if ( 𝐼 = 𝐾 , if ( 𝐽 = 𝐿 , 𝑆 , 0 ) , ( 𝐼 𝑀 𝐽 ) ) ) |