Step |
Hyp |
Ref |
Expression |
1 |
|
marrepfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
marrepfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
marrepfval.q |
⊢ 𝑄 = ( 𝑁 matRRep 𝑅 ) |
4 |
|
marrepfval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
6 |
5
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
7 |
6 6
|
jca |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
9 |
|
mpoexga |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ∈ V ) |
10 |
8 9
|
syl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ∈ V ) |
11 |
|
ifeq1 |
⊢ ( 𝑠 = 𝑆 → if ( 𝑗 = 𝑙 , 𝑠 , 0 ) = if ( 𝑗 = 𝑙 , 𝑆 , 0 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑠 = 𝑆 ) → if ( 𝑗 = 𝑙 , 𝑠 , 0 ) = if ( 𝑗 = 𝑙 , 𝑆 , 0 ) ) |
13 |
|
oveq |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑠 = 𝑆 ) → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
15 |
12 14
|
ifeq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑠 = 𝑆 ) → if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) = if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) |
16 |
15
|
mpoeq3dv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑠 = 𝑆 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
17 |
16
|
mpoeq3dv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑠 = 𝑆 ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
18 |
1 2 3 4
|
marrepfval |
⊢ 𝑄 = ( 𝑚 ∈ 𝐵 , 𝑠 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑠 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
19 |
17 18
|
ovmpoga |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ∈ V ) → ( 𝑀 𝑄 𝑆 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
20 |
10 19
|
mpd3an3 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑀 𝑄 𝑆 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 𝑆 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |