Step |
Hyp |
Ref |
Expression |
1 |
|
marypha1.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
marypha1.b |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
marypha1.c |
⊢ ( 𝜑 → 𝐶 ⊆ ( 𝐴 × 𝐵 ) ) |
4 |
|
marypha1.d |
⊢ ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → 𝑑 ≼ ( 𝐶 “ 𝑑 ) ) |
5 |
|
elpwi |
⊢ ( 𝑑 ∈ 𝒫 𝐴 → 𝑑 ⊆ 𝐴 ) |
6 |
5 4
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝒫 𝐴 ) → 𝑑 ≼ ( 𝐶 “ 𝑑 ) ) |
7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝐶 “ 𝑑 ) ) |
8 |
|
imaeq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 “ 𝑑 ) = ( 𝐶 “ 𝑑 ) ) |
9 |
8
|
breq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ 𝑑 ≼ ( 𝐶 “ 𝑑 ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝐶 “ 𝑑 ) ) ) |
11 |
|
pweq |
⊢ ( 𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶 ) |
12 |
11
|
rexeqdv |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑓 ∈ 𝒫 𝑐 𝑓 : 𝐴 –1-1→ V ↔ ∃ 𝑓 ∈ 𝒫 𝐶 𝑓 : 𝐴 –1-1→ V ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝑐 𝑓 : 𝐴 –1-1→ V ) ↔ ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝐶 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝐶 𝑓 : 𝐴 –1-1→ V ) ) ) |
14 |
|
xpeq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 × 𝑏 ) = ( 𝐴 × 𝐵 ) ) |
15 |
14
|
pweqd |
⊢ ( 𝑏 = 𝐵 → 𝒫 ( 𝐴 × 𝑏 ) = 𝒫 ( 𝐴 × 𝐵 ) ) |
16 |
15
|
raleqdv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝑐 𝑓 : 𝐴 –1-1→ V ) ↔ ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝐵 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝑐 𝑓 : 𝐴 –1-1→ V ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝑐 𝑓 : 𝐴 –1-1→ V ) ) ↔ ( 𝐴 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝐵 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝑐 𝑓 : 𝐴 –1-1→ V ) ) ) ) |
18 |
|
marypha1lem |
⊢ ( 𝐴 ∈ Fin → ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝑐 𝑓 : 𝐴 –1-1→ V ) ) ) |
19 |
18
|
com12 |
⊢ ( 𝑏 ∈ Fin → ( 𝐴 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝑐 𝑓 : 𝐴 –1-1→ V ) ) ) |
20 |
17 19
|
vtoclga |
⊢ ( 𝐵 ∈ Fin → ( 𝐴 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝐵 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝑐 𝑓 : 𝐴 –1-1→ V ) ) ) |
21 |
2 1 20
|
sylc |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝐵 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝑐 𝑓 : 𝐴 –1-1→ V ) ) |
22 |
1 2
|
xpexd |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V ) |
23 |
22 3
|
sselpwd |
⊢ ( 𝜑 → 𝐶 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
24 |
13 21 23
|
rspcdva |
⊢ ( 𝜑 → ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝐶 “ 𝑑 ) → ∃ 𝑓 ∈ 𝒫 𝐶 𝑓 : 𝐴 –1-1→ V ) ) |
25 |
7 24
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝒫 𝐶 𝑓 : 𝐴 –1-1→ V ) |
26 |
|
elpwi |
⊢ ( 𝑓 ∈ 𝒫 𝐶 → 𝑓 ⊆ 𝐶 ) |
27 |
26 3
|
sylan9ssr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝒫 𝐶 ) → 𝑓 ⊆ ( 𝐴 × 𝐵 ) ) |
28 |
|
rnss |
⊢ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑓 ⊆ ran ( 𝐴 × 𝐵 ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝒫 𝐶 ) → ran 𝑓 ⊆ ran ( 𝐴 × 𝐵 ) ) |
30 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
31 |
29 30
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝒫 𝐶 ) → ran 𝑓 ⊆ 𝐵 ) |
32 |
|
f1ssr |
⊢ ( ( 𝑓 : 𝐴 –1-1→ V ∧ ran 𝑓 ⊆ 𝐵 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
33 |
32
|
expcom |
⊢ ( ran 𝑓 ⊆ 𝐵 → ( 𝑓 : 𝐴 –1-1→ V → 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
34 |
31 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝒫 𝐶 ) → ( 𝑓 : 𝐴 –1-1→ V → 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
35 |
34
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝒫 𝐶 𝑓 : 𝐴 –1-1→ V → ∃ 𝑓 ∈ 𝒫 𝐶 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
36 |
25 35
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝒫 𝐶 𝑓 : 𝐴 –1-1→ 𝐵 ) |