| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xpeq1 | 
							⊢ ( 𝑎  =  𝑓  →  ( 𝑎  ×  𝑏 )  =  ( 𝑓  ×  𝑏 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							pweqd | 
							⊢ ( 𝑎  =  𝑓  →  𝒫  ( 𝑎  ×  𝑏 )  =  𝒫  ( 𝑓  ×  𝑏 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑎  =  𝑓  →  𝒫  𝑎  =  𝒫  𝑓 )  | 
						
						
							| 4 | 
							
								3
							 | 
							raleqdv | 
							⊢ ( 𝑎  =  𝑓  →  ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							f1eq2 | 
							⊢ ( 𝑎  =  𝑓  →  ( 𝑒 : 𝑎 –1-1→ V  ↔  𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							rexbidv | 
							⊢ ( 𝑎  =  𝑓  →  ( ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V  ↔  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							imbi12d | 
							⊢ ( 𝑎  =  𝑓  →  ( ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V )  ↔  ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							raleqbidv | 
							⊢ ( 𝑎  =  𝑓  →  ( ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V )  ↔  ∀ 𝑐  ∈  𝒫  ( 𝑓  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							imbi2d | 
							⊢ ( 𝑎  =  𝑓  →  ( ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) )  ↔  ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝑓  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							xpeq1 | 
							⊢ ( 𝑎  =  𝐴  →  ( 𝑎  ×  𝑏 )  =  ( 𝐴  ×  𝑏 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							pweqd | 
							⊢ ( 𝑎  =  𝐴  →  𝒫  ( 𝑎  ×  𝑏 )  =  𝒫  ( 𝐴  ×  𝑏 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑎  =  𝐴  →  𝒫  𝑎  =  𝒫  𝐴 )  | 
						
						
							| 13 | 
							
								12
							 | 
							raleqdv | 
							⊢ ( 𝑎  =  𝐴  →  ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  ∀ 𝑑  ∈  𝒫  𝐴 𝑑  ≼  ( 𝑐  “  𝑑 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							f1eq2 | 
							⊢ ( 𝑎  =  𝐴  →  ( 𝑒 : 𝑎 –1-1→ V  ↔  𝑒 : 𝐴 –1-1→ V ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rexbidv | 
							⊢ ( 𝑎  =  𝐴  →  ( ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V  ↔  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝐴 –1-1→ V ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							imbi12d | 
							⊢ ( 𝑎  =  𝐴  →  ( ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V )  ↔  ( ∀ 𝑑  ∈  𝒫  𝐴 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝐴 –1-1→ V ) ) )  | 
						
						
							| 17 | 
							
								11 16
							 | 
							raleqbidv | 
							⊢ ( 𝑎  =  𝐴  →  ( ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V )  ↔  ∀ 𝑐  ∈  𝒫  ( 𝐴  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝐴 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝐴 –1-1→ V ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							imbi2d | 
							⊢ ( 𝑎  =  𝐴  →  ( ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) )  ↔  ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝐴  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝐴 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝐴 –1-1→ V ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							bi2.04 | 
							⊢ ( ( 𝑎  ⊊  𝑓  →  ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ↔  ( 𝑏  ∈  Fin  →  ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							albii | 
							⊢ ( ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ↔  ∀ 𝑎 ( 𝑏  ∈  Fin  →  ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							19.21v | 
							⊢ ( ∀ 𝑎 ( 𝑏  ∈  Fin  →  ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ↔  ( 𝑏  ∈  Fin  →  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							bitri | 
							⊢ ( ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ↔  ( 𝑏  ∈  Fin  →  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							0elpw | 
							⊢ ∅  ∈  𝒫  𝑔  | 
						
						
							| 24 | 
							
								
							 | 
							f10 | 
							⊢ ∅ : ∅ –1-1→ V  | 
						
						
							| 25 | 
							
								
							 | 
							f1eq1 | 
							⊢ ( 𝑒  =  ∅  →  ( 𝑒 : ∅ –1-1→ V  ↔  ∅ : ∅ –1-1→ V ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							rspcev | 
							⊢ ( ( ∅  ∈  𝒫  𝑔  ∧  ∅ : ∅ –1-1→ V )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : ∅ –1-1→ V )  | 
						
						
							| 27 | 
							
								23 24 26
							 | 
							mp2an | 
							⊢ ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : ∅ –1-1→ V  | 
						
						
							| 28 | 
							
								
							 | 
							f1eq2 | 
							⊢ ( 𝑓  =  ∅  →  ( 𝑒 : 𝑓 –1-1→ V  ↔  𝑒 : ∅ –1-1→ V ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							rexbidv | 
							⊢ ( 𝑓  =  ∅  →  ( ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V  ↔  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : ∅ –1-1→ V ) )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							mpbiri | 
							⊢ ( 𝑓  =  ∅  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 31 | 
							
								30
							 | 
							a1i | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( 𝑓  =  ∅  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 32 | 
							
								
							 | 
							n0 | 
							⊢ ( 𝑓  ≠  ∅  ↔  ∃ 𝑖 𝑖  ∈  𝑓 )  | 
						
						
							| 33 | 
							
								
							 | 
							snelpwi | 
							⊢ ( 𝑖  ∈  𝑓  →  { 𝑖 }  ∈  𝒫  𝑓 )  | 
						
						
							| 34 | 
							
								
							 | 
							id | 
							⊢ ( 𝑑  =  { 𝑖 }  →  𝑑  =  { 𝑖 } )  | 
						
						
							| 35 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑑  =  { 𝑖 }  →  ( 𝑔  “  𝑑 )  =  ( 𝑔  “  { 𝑖 } ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							breq12d | 
							⊢ ( 𝑑  =  { 𝑖 }  →  ( 𝑑  ≼  ( 𝑔  “  𝑑 )  ↔  { 𝑖 }  ≼  ( 𝑔  “  { 𝑖 } ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							rspcva | 
							⊢ ( ( { 𝑖 }  ∈  𝒫  𝑓  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) )  →  { 𝑖 }  ≼  ( 𝑔  “  { 𝑖 } ) )  | 
						
						
							| 38 | 
							
								
							 | 
							vex | 
							⊢ 𝑖  ∈  V  | 
						
						
							| 39 | 
							
								38
							 | 
							snnz | 
							⊢ { 𝑖 }  ≠  ∅  | 
						
						
							| 40 | 
							
								
							 | 
							vsnex | 
							⊢ { 𝑖 }  ∈  V  | 
						
						
							| 41 | 
							
								40
							 | 
							0sdom | 
							⊢ ( ∅  ≺  { 𝑖 }  ↔  { 𝑖 }  ≠  ∅ )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							mpbir | 
							⊢ ∅  ≺  { 𝑖 }  | 
						
						
							| 43 | 
							
								
							 | 
							sdomdomtr | 
							⊢ ( ( ∅  ≺  { 𝑖 }  ∧  { 𝑖 }  ≼  ( 𝑔  “  { 𝑖 } ) )  →  ∅  ≺  ( 𝑔  “  { 𝑖 } ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							mpan | 
							⊢ ( { 𝑖 }  ≼  ( 𝑔  “  { 𝑖 } )  →  ∅  ≺  ( 𝑔  “  { 𝑖 } ) )  | 
						
						
							| 45 | 
							
								
							 | 
							vex | 
							⊢ 𝑔  ∈  V  | 
						
						
							| 46 | 
							
								45
							 | 
							imaex | 
							⊢ ( 𝑔  “  { 𝑖 } )  ∈  V  | 
						
						
							| 47 | 
							
								46
							 | 
							0sdom | 
							⊢ ( ∅  ≺  ( 𝑔  “  { 𝑖 } )  ↔  ( 𝑔  “  { 𝑖 } )  ≠  ∅ )  | 
						
						
							| 48 | 
							
								44 47
							 | 
							sylib | 
							⊢ ( { 𝑖 }  ≼  ( 𝑔  “  { 𝑖 } )  →  ( 𝑔  “  { 𝑖 } )  ≠  ∅ )  | 
						
						
							| 49 | 
							
								37 48
							 | 
							syl | 
							⊢ ( ( { 𝑖 }  ∈  𝒫  𝑓  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) )  →  ( 𝑔  “  { 𝑖 } )  ≠  ∅ )  | 
						
						
							| 50 | 
							
								49
							 | 
							expcom | 
							⊢ ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 )  →  ( { 𝑖 }  ∈  𝒫  𝑓  →  ( 𝑔  “  { 𝑖 } )  ≠  ∅ ) )  | 
						
						
							| 51 | 
							
								33 50
							 | 
							syl5 | 
							⊢ ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 )  →  ( 𝑖  ∈  𝑓  →  ( 𝑔  “  { 𝑖 } )  ≠  ∅ ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantl | 
							⊢ ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) )  →  ( 𝑖  ∈  𝑓  →  ( 𝑔  “  { 𝑖 } )  ≠  ∅ ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							ad2antlr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( 𝑖  ∈  𝑓  →  ( 𝑔  “  { 𝑖 } )  ≠  ∅ ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							impr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 ) )  →  ( 𝑔  “  { 𝑖 } )  ≠  ∅ )  | 
						
						
							| 55 | 
							
								
							 | 
							n0 | 
							⊢ ( ( 𝑔  “  { 𝑖 } )  ≠  ∅  ↔  ∃ 𝑗 𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							sylib | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 ) )  →  ∃ 𝑗 𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  | 
						
						
							| 57 | 
							
								45
							 | 
							imaex | 
							⊢ ( 𝑔  “  𝑐 )  ∈  V  | 
						
						
							| 58 | 
							
								57
							 | 
							difexi | 
							⊢ ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } )  ∈  V  | 
						
						
							| 59 | 
							
								58
							 | 
							0dom | 
							⊢ ∅  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } )  | 
						
						
							| 60 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑐  =  ∅  →  ( 𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } )  ↔  ∅  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) ) )  | 
						
						
							| 61 | 
							
								59 60
							 | 
							mpbiri | 
							⊢ ( 𝑐  =  ∅  →  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							a1i | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) )  →  ( 𝑐  =  ∅  →  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  ∧  𝑐  ≠  ∅ ) )  →  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  →  𝑐  ⊆  ( 𝑓  ∖  { 𝑖 } ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							ad2antrl | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  ∧  𝑐  ≠  ∅ ) )  →  𝑐  ⊆  ( 𝑓  ∖  { 𝑖 } ) )  | 
						
						
							| 66 | 
							
								
							 | 
							difsnpss | 
							⊢ ( 𝑖  ∈  𝑓  ↔  ( 𝑓  ∖  { 𝑖 } )  ⊊  𝑓 )  | 
						
						
							| 67 | 
							
								66
							 | 
							biimpi | 
							⊢ ( 𝑖  ∈  𝑓  →  ( 𝑓  ∖  { 𝑖 } )  ⊊  𝑓 )  | 
						
						
							| 68 | 
							
								67
							 | 
							ad2antlr | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  ∧  𝑐  ≠  ∅ ) )  →  ( 𝑓  ∖  { 𝑖 } )  ⊊  𝑓 )  | 
						
						
							| 69 | 
							
								65 68
							 | 
							sspsstrd | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  ∧  𝑐  ≠  ∅ ) )  →  𝑐  ⊊  𝑓 )  | 
						
						
							| 70 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  ∧  𝑐  ≠  ∅ ) )  →  𝑐  ≠  ∅ )  | 
						
						
							| 71 | 
							
								69 70
							 | 
							jca | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  ∧  𝑐  ≠  ∅ ) )  →  ( 𝑐  ⊊  𝑓  ∧  𝑐  ≠  ∅ ) )  | 
						
						
							| 72 | 
							
								
							 | 
							psseq1 | 
							⊢ ( ℎ  =  𝑐  →  ( ℎ  ⊊  𝑓  ↔  𝑐  ⊊  𝑓 ) )  | 
						
						
							| 73 | 
							
								
							 | 
							neeq1 | 
							⊢ ( ℎ  =  𝑐  →  ( ℎ  ≠  ∅  ↔  𝑐  ≠  ∅ ) )  | 
						
						
							| 74 | 
							
								72 73
							 | 
							anbi12d | 
							⊢ ( ℎ  =  𝑐  →  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ↔  ( 𝑐  ⊊  𝑓  ∧  𝑐  ≠  ∅ ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							id | 
							⊢ ( ℎ  =  𝑐  →  ℎ  =  𝑐 )  | 
						
						
							| 76 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( ℎ  =  𝑐  →  ( 𝑔  “  ℎ )  =  ( 𝑔  “  𝑐 ) )  | 
						
						
							| 77 | 
							
								75 76
							 | 
							breq12d | 
							⊢ ( ℎ  =  𝑐  →  ( ℎ  ≺  ( 𝑔  “  ℎ )  ↔  𝑐  ≺  ( 𝑔  “  𝑐 ) ) )  | 
						
						
							| 78 | 
							
								74 77
							 | 
							imbi12d | 
							⊢ ( ℎ  =  𝑐  →  ( ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ↔  ( ( 𝑐  ⊊  𝑓  ∧  𝑐  ≠  ∅ )  →  𝑐  ≺  ( 𝑔  “  𝑐 ) ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							spvv | 
							⊢ ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  →  ( ( 𝑐  ⊊  𝑓  ∧  𝑐  ≠  ∅ )  →  𝑐  ≺  ( 𝑔  “  𝑐 ) ) )  | 
						
						
							| 80 | 
							
								63 71 79
							 | 
							sylc | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  ∧  𝑐  ≠  ∅ ) )  →  𝑐  ≺  ( 𝑔  “  𝑐 ) )  | 
						
						
							| 81 | 
							
								
							 | 
							domdifsn | 
							⊢ ( 𝑐  ≺  ( 𝑔  “  𝑐 )  →  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							syl | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  ∧  𝑐  ≠  ∅ ) )  →  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							expr | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) )  →  ( 𝑐  ≠  ∅  →  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) ) )  | 
						
						
							| 84 | 
							
								62 83
							 | 
							pm2.61dne | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) )  →  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							adantlrr | 
							⊢ ( ( ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) )  →  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							adantll | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) )  →  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 87 | 
							
								
							 | 
							dfss2 | 
							⊢ ( 𝑐  ⊆  ( 𝑓  ∖  { 𝑖 } )  ↔  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) )  =  𝑐 )  | 
						
						
							| 88 | 
							
								64 87
							 | 
							sylib | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  →  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) )  =  𝑐 )  | 
						
						
							| 89 | 
							
								88
							 | 
							imaeq2d | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  →  ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) ) )  =  ( 𝑔  “  𝑐 ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							ineq1d | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } )  →  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) ) )  ∩  ( 𝑏  ∖  { 𝑗 } ) )  =  ( ( 𝑔  “  𝑐 )  ∩  ( 𝑏  ∖  { 𝑗 } ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) )  →  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) ) )  ∩  ( 𝑏  ∖  { 𝑗 } ) )  =  ( ( 𝑔  “  𝑐 )  ∩  ( 𝑏  ∖  { 𝑗 } ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							indif2 | 
							⊢ ( ( 𝑔  “  𝑐 )  ∩  ( 𝑏  ∖  { 𝑗 } ) )  =  ( ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  ∖  { 𝑗 } )  | 
						
						
							| 93 | 
							
								
							 | 
							imassrn | 
							⊢ ( 𝑔  “  𝑐 )  ⊆  ran  𝑔  | 
						
						
							| 94 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  →  𝑔  ⊆  ( 𝑓  ×  𝑏 ) )  | 
						
						
							| 95 | 
							
								
							 | 
							rnss | 
							⊢ ( 𝑔  ⊆  ( 𝑓  ×  𝑏 )  →  ran  𝑔  ⊆  ran  ( 𝑓  ×  𝑏 ) )  | 
						
						
							| 96 | 
							
								
							 | 
							rnxpss | 
							⊢ ran  ( 𝑓  ×  𝑏 )  ⊆  𝑏  | 
						
						
							| 97 | 
							
								95 96
							 | 
							sstrdi | 
							⊢ ( 𝑔  ⊆  ( 𝑓  ×  𝑏 )  →  ran  𝑔  ⊆  𝑏 )  | 
						
						
							| 98 | 
							
								94 97
							 | 
							syl | 
							⊢ ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  →  ran  𝑔  ⊆  𝑏 )  | 
						
						
							| 99 | 
							
								93 98
							 | 
							sstrid | 
							⊢ ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  →  ( 𝑔  “  𝑐 )  ⊆  𝑏 )  | 
						
						
							| 100 | 
							
								
							 | 
							dfss2 | 
							⊢ ( ( 𝑔  “  𝑐 )  ⊆  𝑏  ↔  ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  =  ( 𝑔  “  𝑐 ) )  | 
						
						
							| 101 | 
							
								99 100
							 | 
							sylib | 
							⊢ ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  →  ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  =  ( 𝑔  “  𝑐 ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							difeq1d | 
							⊢ ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  →  ( ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  ∖  { 𝑗 } )  =  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  →  ( ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  ∖  { 𝑗 } )  =  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 104 | 
							
								92 103
							 | 
							eqtrid | 
							⊢ ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  →  ( ( 𝑔  “  𝑐 )  ∩  ( 𝑏  ∖  { 𝑗 } ) )  =  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) )  →  ( ( 𝑔  “  𝑐 )  ∩  ( 𝑏  ∖  { 𝑗 } ) )  =  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 106 | 
							
								91 105
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) )  →  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) ) )  ∩  ( 𝑏  ∖  { 𝑗 } ) )  =  ( ( 𝑔  “  𝑐 )  ∖  { 𝑗 } ) )  | 
						
						
							| 107 | 
							
								86 106
							 | 
							breqtrrd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) )  →  𝑐  ≼  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) ) )  ∩  ( 𝑏  ∖  { 𝑗 } ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							ralrimiva | 
							⊢ ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ∀ 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑐  ≼  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) ) )  ∩  ( 𝑏  ∖  { 𝑗 } ) ) )  | 
						
						
							| 109 | 
							
								
							 | 
							id | 
							⊢ ( 𝑐  =  𝑑  →  𝑐  =  𝑑 )  | 
						
						
							| 110 | 
							
								
							 | 
							imainrect | 
							⊢ ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑐 )  =  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) ) )  ∩  ( 𝑏  ∖  { 𝑗 } ) )  | 
						
						
							| 111 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑐  =  𝑑  →  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑐 )  =  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 ) )  | 
						
						
							| 112 | 
							
								110 111
							 | 
							eqtr3id | 
							⊢ ( 𝑐  =  𝑑  →  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) ) )  ∩  ( 𝑏  ∖  { 𝑗 } ) )  =  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 ) )  | 
						
						
							| 113 | 
							
								109 112
							 | 
							breq12d | 
							⊢ ( 𝑐  =  𝑑  →  ( 𝑐  ≼  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) ) )  ∩  ( 𝑏  ∖  { 𝑗 } ) )  ↔  𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 ) ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑐  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑐  ≼  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  { 𝑖 } ) ) )  ∩  ( 𝑏  ∖  { 𝑗 } ) )  ↔  ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 ) )  | 
						
						
							| 115 | 
							
								108 114
							 | 
							sylib | 
							⊢ ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 ) )  | 
						
						
							| 116 | 
							
								115
							 | 
							adantllr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 ) )  | 
						
						
							| 117 | 
							
								
							 | 
							inss2 | 
							⊢ ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ⊆  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) )  | 
						
						
							| 118 | 
							
								
							 | 
							difss | 
							⊢ ( 𝑏  ∖  { 𝑗 } )  ⊆  𝑏  | 
						
						
							| 119 | 
							
								
							 | 
							xpss2 | 
							⊢ ( ( 𝑏  ∖  { 𝑗 } )  ⊆  𝑏  →  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) )  ⊆  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 ) )  | 
						
						
							| 120 | 
							
								118 119
							 | 
							ax-mp | 
							⊢ ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) )  ⊆  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 )  | 
						
						
							| 121 | 
							
								117 120
							 | 
							sstri | 
							⊢ ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ⊆  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 )  | 
						
						
							| 122 | 
							
								45
							 | 
							inex1 | 
							⊢ ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∈  V  | 
						
						
							| 123 | 
							
								122
							 | 
							elpw | 
							⊢ ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∈  𝒫  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 )  ↔  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ⊆  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 ) )  | 
						
						
							| 124 | 
							
								121 123
							 | 
							mpbir | 
							⊢ ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∈  𝒫  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 )  | 
						
						
							| 125 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  | 
						
						
							| 126 | 
							
								67
							 | 
							adantr | 
							⊢ ( ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  →  ( 𝑓  ∖  { 𝑖 } )  ⊊  𝑓 )  | 
						
						
							| 127 | 
							
								126
							 | 
							ad2antll | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ( 𝑓  ∖  { 𝑖 } )  ⊊  𝑓 )  | 
						
						
							| 128 | 
							
								
							 | 
							vex | 
							⊢ 𝑓  ∈  V  | 
						
						
							| 129 | 
							
								128
							 | 
							difexi | 
							⊢ ( 𝑓  ∖  { 𝑖 } )  ∈  V  | 
						
						
							| 130 | 
							
								
							 | 
							psseq1 | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  { 𝑖 } )  →  ( 𝑎  ⊊  𝑓  ↔  ( 𝑓  ∖  { 𝑖 } )  ⊊  𝑓 ) )  | 
						
						
							| 131 | 
							
								
							 | 
							xpeq1 | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  { 𝑖 } )  →  ( 𝑎  ×  𝑏 )  =  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 ) )  | 
						
						
							| 132 | 
							
								131
							 | 
							pweqd | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  { 𝑖 } )  →  𝒫  ( 𝑎  ×  𝑏 )  =  𝒫  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 ) )  | 
						
						
							| 133 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  { 𝑖 } )  →  𝒫  𝑎  =  𝒫  ( 𝑓  ∖  { 𝑖 } ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							raleqdv | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  { 𝑖 } )  →  ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( 𝑐  “  𝑑 ) ) )  | 
						
						
							| 135 | 
							
								
							 | 
							f1eq2 | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  { 𝑖 } )  →  ( 𝑒 : 𝑎 –1-1→ V  ↔  𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							rexbidv | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  { 𝑖 } )  →  ( ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V  ↔  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  | 
						
						
							| 137 | 
							
								134 136
							 | 
							imbi12d | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  { 𝑖 } )  →  ( ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V )  ↔  ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) ) )  | 
						
						
							| 138 | 
							
								132 137
							 | 
							raleqbidv | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  { 𝑖 } )  →  ( ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V )  ↔  ∀ 𝑐  ∈  𝒫  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) ) )  | 
						
						
							| 139 | 
							
								130 138
							 | 
							imbi12d | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  { 𝑖 } )  →  ( ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) )  ↔  ( ( 𝑓  ∖  { 𝑖 } )  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) ) ) )  | 
						
						
							| 140 | 
							
								129 139
							 | 
							spcv | 
							⊢ ( ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) )  →  ( ( 𝑓  ∖  { 𝑖 } )  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) ) )  | 
						
						
							| 141 | 
							
								125 127 140
							 | 
							sylc | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ∀ 𝑐  ∈  𝒫  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  | 
						
						
							| 142 | 
							
								
							 | 
							imaeq1 | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  ( 𝑐  “  𝑑 )  =  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 ) )  | 
						
						
							| 143 | 
							
								142
							 | 
							breq2d | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  ( 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 ) ) )  | 
						
						
							| 144 | 
							
								143
							 | 
							ralbidv | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 ) ) )  | 
						
						
							| 145 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  𝒫  𝑐  =  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							rexeqdv | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  ( ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V  ↔  ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  | 
						
						
							| 147 | 
							
								144 146
							 | 
							imbi12d | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  ( ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V )  ↔  ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							rspcva | 
							⊢ ( ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∈  𝒫  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 )  ∧  ∀ 𝑐  ∈  𝒫  ( ( 𝑓  ∖  { 𝑖 } )  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  →  ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  | 
						
						
							| 149 | 
							
								124 141 148
							 | 
							sylancr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  { 𝑖 } ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  | 
						
						
							| 150 | 
							
								116 149
							 | 
							mpd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V )  | 
						
						
							| 151 | 
							
								
							 | 
							f1eq1 | 
							⊢ ( 𝑒  =  𝑘  →  ( 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V  ↔  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  | 
						
						
							| 152 | 
							
								151
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑒 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V  ↔  ∃ 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V )  | 
						
						
							| 153 | 
							
								150 152
							 | 
							sylib | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ∃ 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V )  | 
						
						
							| 154 | 
							
								
							 | 
							vex | 
							⊢ 𝑗  ∈  V  | 
						
						
							| 155 | 
							
								38 154
							 | 
							elimasn | 
							⊢ ( 𝑗  ∈  ( 𝑔  “  { 𝑖 } )  ↔  〈 𝑖 ,  𝑗 〉  ∈  𝑔 )  | 
						
						
							| 156 | 
							
								155
							 | 
							biimpi | 
							⊢ ( 𝑗  ∈  ( 𝑔  “  { 𝑖 } )  →  〈 𝑖 ,  𝑗 〉  ∈  𝑔 )  | 
						
						
							| 157 | 
							
								156
							 | 
							snssd | 
							⊢ ( 𝑗  ∈  ( 𝑔  “  { 𝑖 } )  →  { 〈 𝑖 ,  𝑗 〉 }  ⊆  𝑔 )  | 
						
						
							| 158 | 
							
								157
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  ∧  𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) )  →  { 〈 𝑖 ,  𝑗 〉 }  ⊆  𝑔 )  | 
						
						
							| 159 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  𝑘  ⊆  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) )  | 
						
						
							| 160 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ⊆  𝑔  | 
						
						
							| 161 | 
							
								159 160
							 | 
							sstrdi | 
							⊢ ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  𝑘  ⊆  𝑔 )  | 
						
						
							| 162 | 
							
								161
							 | 
							adantl | 
							⊢ ( ( ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  ∧  𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) )  →  𝑘  ⊆  𝑔 )  | 
						
						
							| 163 | 
							
								158 162
							 | 
							unssd | 
							⊢ ( ( ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  ∧  𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 )  ⊆  𝑔 )  | 
						
						
							| 164 | 
							
								45
							 | 
							elpw2 | 
							⊢ ( ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 )  ∈  𝒫  𝑔  ↔  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 )  ⊆  𝑔 )  | 
						
						
							| 165 | 
							
								163 164
							 | 
							sylibr | 
							⊢ ( ( ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  ∧  𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 )  ∈  𝒫  𝑔 )  | 
						
						
							| 166 | 
							
								165
							 | 
							ad2ant2lr | 
							⊢ ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  ∧  ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 )  ∈  𝒫  𝑔 )  | 
						
						
							| 167 | 
							
								38 154
							 | 
							f1osn | 
							⊢ { 〈 𝑖 ,  𝑗 〉 } : { 𝑖 } –1-1-onto→ { 𝑗 }  | 
						
						
							| 168 | 
							
								167
							 | 
							a1i | 
							⊢ ( ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V )  →  { 〈 𝑖 ,  𝑗 〉 } : { 𝑖 } –1-1-onto→ { 𝑗 } )  | 
						
						
							| 169 | 
							
								
							 | 
							f1f1orn | 
							⊢ ( 𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V  →  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1-onto→ ran  𝑘 )  | 
						
						
							| 170 | 
							
								169
							 | 
							adantl | 
							⊢ ( ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V )  →  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1-onto→ ran  𝑘 )  | 
						
						
							| 171 | 
							
								
							 | 
							disjdif | 
							⊢ ( { 𝑖 }  ∩  ( 𝑓  ∖  { 𝑖 } ) )  =  ∅  | 
						
						
							| 172 | 
							
								171
							 | 
							a1i | 
							⊢ ( ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V )  →  ( { 𝑖 }  ∩  ( 𝑓  ∖  { 𝑖 } ) )  =  ∅ )  | 
						
						
							| 173 | 
							
								
							 | 
							incom | 
							⊢ ( { 𝑗 }  ∩  ran  𝑘 )  =  ( ran  𝑘  ∩  { 𝑗 } )  | 
						
						
							| 174 | 
							
								159 117
							 | 
							sstrdi | 
							⊢ ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  𝑘  ⊆  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  | 
						
						
							| 175 | 
							
								
							 | 
							rnss | 
							⊢ ( 𝑘  ⊆  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) )  →  ran  𝑘  ⊆  ran  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  | 
						
						
							| 176 | 
							
								
							 | 
							rnxpss | 
							⊢ ran  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) )  ⊆  ( 𝑏  ∖  { 𝑗 } )  | 
						
						
							| 177 | 
							
								175 176
							 | 
							sstrdi | 
							⊢ ( 𝑘  ⊆  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) )  →  ran  𝑘  ⊆  ( 𝑏  ∖  { 𝑗 } ) )  | 
						
						
							| 178 | 
							
								174 177
							 | 
							syl | 
							⊢ ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  ran  𝑘  ⊆  ( 𝑏  ∖  { 𝑗 } ) )  | 
						
						
							| 179 | 
							
								
							 | 
							disjdifr | 
							⊢ ( ( 𝑏  ∖  { 𝑗 } )  ∩  { 𝑗 } )  =  ∅  | 
						
						
							| 180 | 
							
								
							 | 
							ssdisj | 
							⊢ ( ( ran  𝑘  ⊆  ( 𝑏  ∖  { 𝑗 } )  ∧  ( ( 𝑏  ∖  { 𝑗 } )  ∩  { 𝑗 } )  =  ∅ )  →  ( ran  𝑘  ∩  { 𝑗 } )  =  ∅ )  | 
						
						
							| 181 | 
							
								178 179 180
							 | 
							sylancl | 
							⊢ ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  ( ran  𝑘  ∩  { 𝑗 } )  =  ∅ )  | 
						
						
							| 182 | 
							
								173 181
							 | 
							eqtrid | 
							⊢ ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  →  ( { 𝑗 }  ∩  ran  𝑘 )  =  ∅ )  | 
						
						
							| 183 | 
							
								182
							 | 
							adantr | 
							⊢ ( ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V )  →  ( { 𝑗 }  ∩  ran  𝑘 )  =  ∅ )  | 
						
						
							| 184 | 
							
								
							 | 
							f1oun | 
							⊢ ( ( ( { 〈 𝑖 ,  𝑗 〉 } : { 𝑖 } –1-1-onto→ { 𝑗 }  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1-onto→ ran  𝑘 )  ∧  ( ( { 𝑖 }  ∩  ( 𝑓  ∖  { 𝑖 } ) )  =  ∅  ∧  ( { 𝑗 }  ∩  ran  𝑘 )  =  ∅ ) )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : ( { 𝑖 }  ∪  ( 𝑓  ∖  { 𝑖 } ) ) –1-1-onto→ ( { 𝑗 }  ∪  ran  𝑘 ) )  | 
						
						
							| 185 | 
							
								168 170 172 183 184
							 | 
							syl22anc | 
							⊢ ( ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : ( { 𝑖 }  ∪  ( 𝑓  ∖  { 𝑖 } ) ) –1-1-onto→ ( { 𝑗 }  ∪  ran  𝑘 ) )  | 
						
						
							| 186 | 
							
								185
							 | 
							adantl | 
							⊢ ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  ∧  ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : ( { 𝑖 }  ∪  ( 𝑓  ∖  { 𝑖 } ) ) –1-1-onto→ ( { 𝑗 }  ∪  ran  𝑘 ) )  | 
						
						
							| 187 | 
							
								
							 | 
							snssi | 
							⊢ ( 𝑖  ∈  𝑓  →  { 𝑖 }  ⊆  𝑓 )  | 
						
						
							| 188 | 
							
								187
							 | 
							ad2antrl | 
							⊢ ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  →  { 𝑖 }  ⊆  𝑓 )  | 
						
						
							| 189 | 
							
								
							 | 
							undif | 
							⊢ ( { 𝑖 }  ⊆  𝑓  ↔  ( { 𝑖 }  ∪  ( 𝑓  ∖  { 𝑖 } ) )  =  𝑓 )  | 
						
						
							| 190 | 
							
								188 189
							 | 
							sylib | 
							⊢ ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  →  ( { 𝑖 }  ∪  ( 𝑓  ∖  { 𝑖 } ) )  =  𝑓 )  | 
						
						
							| 191 | 
							
								190
							 | 
							f1oeq2d | 
							⊢ ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  →  ( ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : ( { 𝑖 }  ∪  ( 𝑓  ∖  { 𝑖 } ) ) –1-1-onto→ ( { 𝑗 }  ∪  ran  𝑘 )  ↔  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1-onto→ ( { 𝑗 }  ∪  ran  𝑘 ) ) )  | 
						
						
							| 192 | 
							
								191
							 | 
							adantr | 
							⊢ ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  ∧  ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  →  ( ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : ( { 𝑖 }  ∪  ( 𝑓  ∖  { 𝑖 } ) ) –1-1-onto→ ( { 𝑗 }  ∪  ran  𝑘 )  ↔  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1-onto→ ( { 𝑗 }  ∪  ran  𝑘 ) ) )  | 
						
						
							| 193 | 
							
								186 192
							 | 
							mpbid | 
							⊢ ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  ∧  ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1-onto→ ( { 𝑗 }  ∪  ran  𝑘 ) )  | 
						
						
							| 194 | 
							
								
							 | 
							f1of1 | 
							⊢ ( ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1-onto→ ( { 𝑗 }  ∪  ran  𝑘 )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1→ ( { 𝑗 }  ∪  ran  𝑘 ) )  | 
						
						
							| 195 | 
							
								
							 | 
							ssv | 
							⊢ ( { 𝑗 }  ∪  ran  𝑘 )  ⊆  V  | 
						
						
							| 196 | 
							
								
							 | 
							f1ss | 
							⊢ ( ( ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1→ ( { 𝑗 }  ∪  ran  𝑘 )  ∧  ( { 𝑗 }  ∪  ran  𝑘 )  ⊆  V )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1→ V )  | 
						
						
							| 197 | 
							
								194 195 196
							 | 
							sylancl | 
							⊢ ( ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1-onto→ ( { 𝑗 }  ∪  ran  𝑘 )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1→ V )  | 
						
						
							| 198 | 
							
								193 197
							 | 
							syl | 
							⊢ ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  ∧  ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  →  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1→ V )  | 
						
						
							| 199 | 
							
								
							 | 
							f1eq1 | 
							⊢ ( 𝑒  =  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 )  →  ( 𝑒 : 𝑓 –1-1→ V  ↔  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1→ V ) )  | 
						
						
							| 200 | 
							
								199
							 | 
							rspcev | 
							⊢ ( ( ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 )  ∈  𝒫  𝑔  ∧  ( { 〈 𝑖 ,  𝑗 〉 }  ∪  𝑘 ) : 𝑓 –1-1→ V )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 201 | 
							
								166 198 200
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  ∧  ( 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) )  ∧  𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 202 | 
							
								201
							 | 
							rexlimdvaa | 
							⊢ ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) )  →  ( ∃ 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 203 | 
							
								202
							 | 
							ex | 
							⊢ ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  →  ( ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  →  ( ∃ 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) ) )  | 
						
						
							| 204 | 
							
								203
							 | 
							adantr | 
							⊢ ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) )  →  ( ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  →  ( ∃ 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) ) )  | 
						
						
							| 205 | 
							
								204
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  →  ( ∃ 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) ) )  | 
						
						
							| 206 | 
							
								205
							 | 
							impr | 
							⊢ ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ( ∃ 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 207 | 
							
								206
							 | 
							adantllr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ( ∃ 𝑘  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  { 𝑖 } )  ×  ( 𝑏  ∖  { 𝑗 } ) ) ) 𝑘 : ( 𝑓  ∖  { 𝑖 } ) –1-1→ V  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 208 | 
							
								153 207
							 | 
							mpd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) ) ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 209 | 
							
								208
							 | 
							expr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( ( 𝑖  ∈  𝑓  ∧  𝑗  ∈  ( 𝑔  “  { 𝑖 } ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 210 | 
							
								209
							 | 
							expd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( 𝑖  ∈  𝑓  →  ( 𝑗  ∈  ( 𝑔  “  { 𝑖 } )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) ) )  | 
						
						
							| 211 | 
							
								210
							 | 
							impr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 ) )  →  ( 𝑗  ∈  ( 𝑔  “  { 𝑖 } )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 212 | 
							
								211
							 | 
							exlimdv | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 ) )  →  ( ∃ 𝑗 𝑗  ∈  ( 𝑔  “  { 𝑖 } )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 213 | 
							
								56 212
							 | 
							mpd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) )  ∧  𝑖  ∈  𝑓 ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 214 | 
							
								213
							 | 
							expr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( 𝑖  ∈  𝑓  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 215 | 
							
								214
							 | 
							exlimdv | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( ∃ 𝑖 𝑖  ∈  𝑓  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 216 | 
							
								32 215
							 | 
							biimtrid | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( 𝑓  ≠  ∅  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 217 | 
							
								31 216
							 | 
							pm2.61dne | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 218 | 
							
								
							 | 
							exanali | 
							⊢ ( ∃ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) )  ↔  ¬  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 219 | 
							
								
							 | 
							simprll | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ℎ  ⊊  𝑓 )  | 
						
						
							| 220 | 
							
								
							 | 
							pssss | 
							⊢ ( ℎ  ⊊  𝑓  →  ℎ  ⊆  𝑓 )  | 
						
						
							| 221 | 
							
								219 220
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ℎ  ⊆  𝑓 )  | 
						
						
							| 222 | 
							
								221
							 | 
							sspwd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  𝒫  ℎ  ⊆  𝒫  𝑓 )  | 
						
						
							| 223 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) )  | 
						
						
							| 224 | 
							
								
							 | 
							ssralv | 
							⊢ ( 𝒫  ℎ  ⊆  𝒫  𝑓  →  ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 )  →  ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  | 
						
						
							| 225 | 
							
								222 223 224
							 | 
							sylc | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑔  “  𝑑 ) )  | 
						
						
							| 226 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑑  ∈  𝒫  ℎ  →  𝑑  ⊆  ℎ )  | 
						
						
							| 227 | 
							
								
							 | 
							resima2 | 
							⊢ ( 𝑑  ⊆  ℎ  →  ( ( 𝑔  ↾  ℎ )  “  𝑑 )  =  ( 𝑔  “  𝑑 ) )  | 
						
						
							| 228 | 
							
								226 227
							 | 
							syl | 
							⊢ ( 𝑑  ∈  𝒫  ℎ  →  ( ( 𝑔  ↾  ℎ )  “  𝑑 )  =  ( 𝑔  “  𝑑 ) )  | 
						
						
							| 229 | 
							
								228
							 | 
							eqcomd | 
							⊢ ( 𝑑  ∈  𝒫  ℎ  →  ( 𝑔  “  𝑑 )  =  ( ( 𝑔  ↾  ℎ )  “  𝑑 ) )  | 
						
						
							| 230 | 
							
								229
							 | 
							breq2d | 
							⊢ ( 𝑑  ∈  𝒫  ℎ  →  ( 𝑑  ≼  ( 𝑔  “  𝑑 )  ↔  𝑑  ≼  ( ( 𝑔  ↾  ℎ )  “  𝑑 ) ) )  | 
						
						
							| 231 | 
							
								230
							 | 
							ralbiia | 
							⊢ ( ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑔  “  𝑑 )  ↔  ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( ( 𝑔  ↾  ℎ )  “  𝑑 ) )  | 
						
						
							| 232 | 
							
								225 231
							 | 
							sylib | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( ( 𝑔  ↾  ℎ )  “  𝑑 ) )  | 
						
						
							| 233 | 
							
								
							 | 
							imaeq1 | 
							⊢ ( 𝑐  =  ( 𝑔  ↾  ℎ )  →  ( 𝑐  “  𝑑 )  =  ( ( 𝑔  ↾  ℎ )  “  𝑑 ) )  | 
						
						
							| 234 | 
							
								233
							 | 
							breq2d | 
							⊢ ( 𝑐  =  ( 𝑔  ↾  ℎ )  →  ( 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  𝑑  ≼  ( ( 𝑔  ↾  ℎ )  “  𝑑 ) ) )  | 
						
						
							| 235 | 
							
								234
							 | 
							ralbidv | 
							⊢ ( 𝑐  =  ( 𝑔  ↾  ℎ )  →  ( ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( ( 𝑔  ↾  ℎ )  “  𝑑 ) ) )  | 
						
						
							| 236 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑐  =  ( 𝑔  ↾  ℎ )  →  𝒫  𝑐  =  𝒫  ( 𝑔  ↾  ℎ ) )  | 
						
						
							| 237 | 
							
								236
							 | 
							rexeqdv | 
							⊢ ( 𝑐  =  ( 𝑔  ↾  ℎ )  →  ( ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ℎ –1-1→ V  ↔  ∃ 𝑒  ∈  𝒫  ( 𝑔  ↾  ℎ ) 𝑒 : ℎ –1-1→ V ) )  | 
						
						
							| 238 | 
							
								235 237
							 | 
							imbi12d | 
							⊢ ( 𝑐  =  ( 𝑔  ↾  ℎ )  →  ( ( ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ℎ –1-1→ V )  ↔  ( ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( ( 𝑔  ↾  ℎ )  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ↾  ℎ ) 𝑒 : ℎ –1-1→ V ) ) )  | 
						
						
							| 239 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  | 
						
						
							| 240 | 
							
								
							 | 
							psseq1 | 
							⊢ ( 𝑎  =  ℎ  →  ( 𝑎  ⊊  𝑓  ↔  ℎ  ⊊  𝑓 ) )  | 
						
						
							| 241 | 
							
								
							 | 
							xpeq1 | 
							⊢ ( 𝑎  =  ℎ  →  ( 𝑎  ×  𝑏 )  =  ( ℎ  ×  𝑏 ) )  | 
						
						
							| 242 | 
							
								241
							 | 
							pweqd | 
							⊢ ( 𝑎  =  ℎ  →  𝒫  ( 𝑎  ×  𝑏 )  =  𝒫  ( ℎ  ×  𝑏 ) )  | 
						
						
							| 243 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑎  =  ℎ  →  𝒫  𝑎  =  𝒫  ℎ )  | 
						
						
							| 244 | 
							
								243
							 | 
							raleqdv | 
							⊢ ( 𝑎  =  ℎ  →  ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑐  “  𝑑 ) ) )  | 
						
						
							| 245 | 
							
								
							 | 
							f1eq2 | 
							⊢ ( 𝑎  =  ℎ  →  ( 𝑒 : 𝑎 –1-1→ V  ↔  𝑒 : ℎ –1-1→ V ) )  | 
						
						
							| 246 | 
							
								245
							 | 
							rexbidv | 
							⊢ ( 𝑎  =  ℎ  →  ( ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V  ↔  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ℎ –1-1→ V ) )  | 
						
						
							| 247 | 
							
								244 246
							 | 
							imbi12d | 
							⊢ ( 𝑎  =  ℎ  →  ( ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V )  ↔  ( ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ℎ –1-1→ V ) ) )  | 
						
						
							| 248 | 
							
								242 247
							 | 
							raleqbidv | 
							⊢ ( 𝑎  =  ℎ  →  ( ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V )  ↔  ∀ 𝑐  ∈  𝒫  ( ℎ  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ℎ –1-1→ V ) ) )  | 
						
						
							| 249 | 
							
								240 248
							 | 
							imbi12d | 
							⊢ ( 𝑎  =  ℎ  →  ( ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) )  ↔  ( ℎ  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( ℎ  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ℎ –1-1→ V ) ) ) )  | 
						
						
							| 250 | 
							
								249
							 | 
							spvv | 
							⊢ ( ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) )  →  ( ℎ  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( ℎ  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ℎ –1-1→ V ) ) )  | 
						
						
							| 251 | 
							
								239 219 250
							 | 
							sylc | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∀ 𝑐  ∈  𝒫  ( ℎ  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ℎ –1-1→ V ) )  | 
						
						
							| 252 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 ) )  | 
						
						
							| 253 | 
							
								
							 | 
							ssres | 
							⊢ ( 𝑔  ⊆  ( 𝑓  ×  𝑏 )  →  ( 𝑔  ↾  ℎ )  ⊆  ( ( 𝑓  ×  𝑏 )  ↾  ℎ ) )  | 
						
						
							| 254 | 
							
								
							 | 
							df-res | 
							⊢ ( ( 𝑓  ×  𝑏 )  ↾  ℎ )  =  ( ( 𝑓  ×  𝑏 )  ∩  ( ℎ  ×  V ) )  | 
						
						
							| 255 | 
							
								
							 | 
							inxp | 
							⊢ ( ( 𝑓  ×  𝑏 )  ∩  ( ℎ  ×  V ) )  =  ( ( 𝑓  ∩  ℎ )  ×  ( 𝑏  ∩  V ) )  | 
						
						
							| 256 | 
							
								
							 | 
							inss2 | 
							⊢ ( 𝑓  ∩  ℎ )  ⊆  ℎ  | 
						
						
							| 257 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝑏  ∩  V )  ⊆  𝑏  | 
						
						
							| 258 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( ( 𝑓  ∩  ℎ )  ⊆  ℎ  ∧  ( 𝑏  ∩  V )  ⊆  𝑏 )  →  ( ( 𝑓  ∩  ℎ )  ×  ( 𝑏  ∩  V ) )  ⊆  ( ℎ  ×  𝑏 ) )  | 
						
						
							| 259 | 
							
								256 257 258
							 | 
							mp2an | 
							⊢ ( ( 𝑓  ∩  ℎ )  ×  ( 𝑏  ∩  V ) )  ⊆  ( ℎ  ×  𝑏 )  | 
						
						
							| 260 | 
							
								255 259
							 | 
							eqsstri | 
							⊢ ( ( 𝑓  ×  𝑏 )  ∩  ( ℎ  ×  V ) )  ⊆  ( ℎ  ×  𝑏 )  | 
						
						
							| 261 | 
							
								254 260
							 | 
							eqsstri | 
							⊢ ( ( 𝑓  ×  𝑏 )  ↾  ℎ )  ⊆  ( ℎ  ×  𝑏 )  | 
						
						
							| 262 | 
							
								253 261
							 | 
							sstrdi | 
							⊢ ( 𝑔  ⊆  ( 𝑓  ×  𝑏 )  →  ( 𝑔  ↾  ℎ )  ⊆  ( ℎ  ×  𝑏 ) )  | 
						
						
							| 263 | 
							
								94 262
							 | 
							syl | 
							⊢ ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  →  ( 𝑔  ↾  ℎ )  ⊆  ( ℎ  ×  𝑏 ) )  | 
						
						
							| 264 | 
							
								45
							 | 
							resex | 
							⊢ ( 𝑔  ↾  ℎ )  ∈  V  | 
						
						
							| 265 | 
							
								264
							 | 
							elpw | 
							⊢ ( ( 𝑔  ↾  ℎ )  ∈  𝒫  ( ℎ  ×  𝑏 )  ↔  ( 𝑔  ↾  ℎ )  ⊆  ( ℎ  ×  𝑏 ) )  | 
						
						
							| 266 | 
							
								263 265
							 | 
							sylibr | 
							⊢ ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  →  ( 𝑔  ↾  ℎ )  ∈  𝒫  ( ℎ  ×  𝑏 ) )  | 
						
						
							| 267 | 
							
								252 266
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( 𝑔  ↾  ℎ )  ∈  𝒫  ( ℎ  ×  𝑏 ) )  | 
						
						
							| 268 | 
							
								238 251 267
							 | 
							rspcdva | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( ∀ 𝑑  ∈  𝒫  ℎ 𝑑  ≼  ( ( 𝑔  ↾  ℎ )  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ↾  ℎ ) 𝑒 : ℎ –1-1→ V ) )  | 
						
						
							| 269 | 
							
								232 268
							 | 
							mpd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ↾  ℎ ) 𝑒 : ℎ –1-1→ V )  | 
						
						
							| 270 | 
							
								
							 | 
							f1eq1 | 
							⊢ ( 𝑒  =  𝑖  →  ( 𝑒 : ℎ –1-1→ V  ↔  𝑖 : ℎ –1-1→ V ) )  | 
						
						
							| 271 | 
							
								270
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑒  ∈  𝒫  ( 𝑔  ↾  ℎ ) 𝑒 : ℎ –1-1→ V  ↔  ∃ 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ ) 𝑖 : ℎ –1-1→ V )  | 
						
						
							| 272 | 
							
								269 271
							 | 
							sylib | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∃ 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ ) 𝑖 : ℎ –1-1→ V )  | 
						
						
							| 273 | 
							
								
							 | 
							id | 
							⊢ ( 𝑑  =  ( ℎ  ∪  𝑐 )  →  𝑑  =  ( ℎ  ∪  𝑐 ) )  | 
						
						
							| 274 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑑  =  ( ℎ  ∪  𝑐 )  →  ( 𝑔  “  𝑑 )  =  ( 𝑔  “  ( ℎ  ∪  𝑐 ) ) )  | 
						
						
							| 275 | 
							
								273 274
							 | 
							breq12d | 
							⊢ ( 𝑑  =  ( ℎ  ∪  𝑐 )  →  ( 𝑑  ≼  ( 𝑔  “  𝑑 )  ↔  ( ℎ  ∪  𝑐 )  ≼  ( 𝑔  “  ( ℎ  ∪  𝑐 ) ) ) )  | 
						
						
							| 276 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  →  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) )  | 
						
						
							| 277 | 
							
								276
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) )  | 
						
						
							| 278 | 
							
								220
							 | 
							ad2antrr | 
							⊢ ( ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) )  →  ℎ  ⊆  𝑓 )  | 
						
						
							| 279 | 
							
								278
							 | 
							ad2antlr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ℎ  ⊆  𝑓 )  | 
						
						
							| 280 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ )  →  𝑐  ⊆  ( 𝑓  ∖  ℎ ) )  | 
						
						
							| 281 | 
							
								
							 | 
							difss | 
							⊢ ( 𝑓  ∖  ℎ )  ⊆  𝑓  | 
						
						
							| 282 | 
							
								280 281
							 | 
							sstrdi | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ )  →  𝑐  ⊆  𝑓 )  | 
						
						
							| 283 | 
							
								282
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  𝑐  ⊆  𝑓 )  | 
						
						
							| 284 | 
							
								279 283
							 | 
							unssd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ( ℎ  ∪  𝑐 )  ⊆  𝑓 )  | 
						
						
							| 285 | 
							
								128
							 | 
							elpw2 | 
							⊢ ( ( ℎ  ∪  𝑐 )  ∈  𝒫  𝑓  ↔  ( ℎ  ∪  𝑐 )  ⊆  𝑓 )  | 
						
						
							| 286 | 
							
								284 285
							 | 
							sylibr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ( ℎ  ∪  𝑐 )  ∈  𝒫  𝑓 )  | 
						
						
							| 287 | 
							
								275 277 286
							 | 
							rspcdva | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ( ℎ  ∪  𝑐 )  ≼  ( 𝑔  “  ( ℎ  ∪  𝑐 ) ) )  | 
						
						
							| 288 | 
							
								
							 | 
							imaundi | 
							⊢ ( 𝑔  “  ( ℎ  ∪  𝑐 ) )  =  ( ( 𝑔  “  ℎ )  ∪  ( 𝑔  “  𝑐 ) )  | 
						
						
							| 289 | 
							
								
							 | 
							undif2 | 
							⊢ ( ( 𝑔  “  ℎ )  ∪  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  =  ( ( 𝑔  “  ℎ )  ∪  ( 𝑔  “  𝑐 ) )  | 
						
						
							| 290 | 
							
								288 289
							 | 
							eqtr4i | 
							⊢ ( 𝑔  “  ( ℎ  ∪  𝑐 ) )  =  ( ( 𝑔  “  ℎ )  ∪  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 291 | 
							
								287 290
							 | 
							breqtrdi | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ( ℎ  ∪  𝑐 )  ≼  ( ( 𝑔  “  ℎ )  ∪  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) ) )  | 
						
						
							| 292 | 
							
								
							 | 
							simp-4l | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  𝑓  ∈  Fin )  | 
						
						
							| 293 | 
							
								292 279
							 | 
							ssfid | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ℎ  ∈  Fin )  | 
						
						
							| 294 | 
							
								
							 | 
							id | 
							⊢ ( 𝑑  =  ℎ  →  𝑑  =  ℎ )  | 
						
						
							| 295 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑑  =  ℎ  →  ( 𝑔  “  𝑑 )  =  ( 𝑔  “  ℎ ) )  | 
						
						
							| 296 | 
							
								294 295
							 | 
							breq12d | 
							⊢ ( 𝑑  =  ℎ  →  ( 𝑑  ≼  ( 𝑔  “  𝑑 )  ↔  ℎ  ≼  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 297 | 
							
								
							 | 
							vex | 
							⊢ ℎ  ∈  V  | 
						
						
							| 298 | 
							
								297
							 | 
							elpw | 
							⊢ ( ℎ  ∈  𝒫  𝑓  ↔  ℎ  ⊆  𝑓 )  | 
						
						
							| 299 | 
							
								279 298
							 | 
							sylibr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ℎ  ∈  𝒫  𝑓 )  | 
						
						
							| 300 | 
							
								296 277 299
							 | 
							rspcdva | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ℎ  ≼  ( 𝑔  “  ℎ ) )  | 
						
						
							| 301 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) )  | 
						
						
							| 302 | 
							
								
							 | 
							bren2 | 
							⊢ ( ℎ  ≈  ( 𝑔  “  ℎ )  ↔  ( ℎ  ≼  ( 𝑔  “  ℎ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 303 | 
							
								300 301 302
							 | 
							sylanbrc | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ℎ  ≈  ( 𝑔  “  ℎ ) )  | 
						
						
							| 304 | 
							
								303
							 | 
							ensymd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ( 𝑔  “  ℎ )  ≈  ℎ )  | 
						
						
							| 305 | 
							
								
							 | 
							incom | 
							⊢ ( ℎ  ∩  𝑐 )  =  ( 𝑐  ∩  ℎ )  | 
						
						
							| 306 | 
							
								
							 | 
							ssdifin0 | 
							⊢ ( 𝑐  ⊆  ( 𝑓  ∖  ℎ )  →  ( 𝑐  ∩  ℎ )  =  ∅ )  | 
						
						
							| 307 | 
							
								305 306
							 | 
							eqtrid | 
							⊢ ( 𝑐  ⊆  ( 𝑓  ∖  ℎ )  →  ( ℎ  ∩  𝑐 )  =  ∅ )  | 
						
						
							| 308 | 
							
								280 307
							 | 
							syl | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ )  →  ( ℎ  ∩  𝑐 )  =  ∅ )  | 
						
						
							| 309 | 
							
								308
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ( ℎ  ∩  𝑐 )  =  ∅ )  | 
						
						
							| 310 | 
							
								
							 | 
							disjdif | 
							⊢ ( ( 𝑔  “  ℎ )  ∩  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  =  ∅  | 
						
						
							| 311 | 
							
								310
							 | 
							a1i | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ( ( 𝑔  “  ℎ )  ∩  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  =  ∅ )  | 
						
						
							| 312 | 
							
								
							 | 
							domunfican | 
							⊢ ( ( ( ℎ  ∈  Fin  ∧  ( 𝑔  “  ℎ )  ≈  ℎ )  ∧  ( ( ℎ  ∩  𝑐 )  =  ∅  ∧  ( ( 𝑔  “  ℎ )  ∩  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  =  ∅ ) )  →  ( ( ℎ  ∪  𝑐 )  ≼  ( ( 𝑔  “  ℎ )  ∪  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  ↔  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) ) )  | 
						
						
							| 313 | 
							
								293 304 309 311 312
							 | 
							syl22anc | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ( ( ℎ  ∪  𝑐 )  ≼  ( ( 𝑔  “  ℎ )  ∪  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  ↔  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) ) )  | 
						
						
							| 314 | 
							
								291 313
							 | 
							mpbid | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  𝑐  ≼  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 315 | 
							
								101
							 | 
							difeq1d | 
							⊢ ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  →  ( ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  ∖  ( 𝑔  “  ℎ ) )  =  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 316 | 
							
								315
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  →  ( ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  ∖  ( 𝑔  “  ℎ ) )  =  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 317 | 
							
								316
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ( ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  ∖  ( 𝑔  “  ℎ ) )  =  ( ( 𝑔  “  𝑐 )  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 318 | 
							
								314 317
							 | 
							breqtrrd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  𝑐  ≼  ( ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 319 | 
							
								
							 | 
							dfss2 | 
							⊢ ( 𝑐  ⊆  ( 𝑓  ∖  ℎ )  ↔  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) )  =  𝑐 )  | 
						
						
							| 320 | 
							
								280 319
							 | 
							sylib | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ )  →  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) )  =  𝑐 )  | 
						
						
							| 321 | 
							
								320
							 | 
							imaeq2d | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ )  →  ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) ) )  =  ( 𝑔  “  𝑐 ) )  | 
						
						
							| 322 | 
							
								321
							 | 
							ineq1d | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ )  →  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) ) )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  =  ( ( 𝑔  “  𝑐 )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  | 
						
						
							| 323 | 
							
								
							 | 
							indif2 | 
							⊢ ( ( 𝑔  “  𝑐 )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  =  ( ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  ∖  ( 𝑔  “  ℎ ) )  | 
						
						
							| 324 | 
							
								322 323
							 | 
							eqtrdi | 
							⊢ ( 𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ )  →  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) ) )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  =  ( ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 325 | 
							
								324
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) ) )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  =  ( ( ( 𝑔  “  𝑐 )  ∩  𝑏 )  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 326 | 
							
								318 325
							 | 
							breqtrrd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  ∧  𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) )  →  𝑐  ≼  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) ) )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  | 
						
						
							| 327 | 
							
								326
							 | 
							ralrimiva | 
							⊢ ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∀ 𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑐  ≼  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) ) )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  | 
						
						
							| 328 | 
							
								
							 | 
							imainrect | 
							⊢ ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑐 )  =  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) ) )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 329 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑐  =  𝑑  →  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑐 )  =  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 ) )  | 
						
						
							| 330 | 
							
								328 329
							 | 
							eqtr3id | 
							⊢ ( 𝑐  =  𝑑  →  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) ) )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  =  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 ) )  | 
						
						
							| 331 | 
							
								109 330
							 | 
							breq12d | 
							⊢ ( 𝑐  =  𝑑  →  ( 𝑐  ≼  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) ) )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  ↔  𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 ) ) )  | 
						
						
							| 332 | 
							
								331
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑐  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑐  ≼  ( ( 𝑔  “  ( 𝑐  ∩  ( 𝑓  ∖  ℎ ) ) )  ∩  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  ↔  ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 ) )  | 
						
						
							| 333 | 
							
								327 332
							 | 
							sylib | 
							⊢ ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 ) )  | 
						
						
							| 334 | 
							
								333
							 | 
							adantllr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 ) )  | 
						
						
							| 335 | 
							
								
							 | 
							inss2 | 
							⊢ ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ⊆  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 336 | 
							
								
							 | 
							difss | 
							⊢ ( 𝑏  ∖  ( 𝑔  “  ℎ ) )  ⊆  𝑏  | 
						
						
							| 337 | 
							
								
							 | 
							xpss2 | 
							⊢ ( ( 𝑏  ∖  ( 𝑔  “  ℎ ) )  ⊆  𝑏  →  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  ⊆  ( ( 𝑓  ∖  ℎ )  ×  𝑏 ) )  | 
						
						
							| 338 | 
							
								336 337
							 | 
							ax-mp | 
							⊢ ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  ⊆  ( ( 𝑓  ∖  ℎ )  ×  𝑏 )  | 
						
						
							| 339 | 
							
								335 338
							 | 
							sstri | 
							⊢ ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ⊆  ( ( 𝑓  ∖  ℎ )  ×  𝑏 )  | 
						
						
							| 340 | 
							
								45
							 | 
							inex1 | 
							⊢ ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∈  V  | 
						
						
							| 341 | 
							
								340
							 | 
							elpw | 
							⊢ ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∈  𝒫  ( ( 𝑓  ∖  ℎ )  ×  𝑏 )  ↔  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ⊆  ( ( 𝑓  ∖  ℎ )  ×  𝑏 ) )  | 
						
						
							| 342 | 
							
								339 341
							 | 
							mpbir | 
							⊢ ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∈  𝒫  ( ( 𝑓  ∖  ℎ )  ×  𝑏 )  | 
						
						
							| 343 | 
							
								
							 | 
							incom | 
							⊢ ( 𝑓  ∩  ℎ )  =  ( ℎ  ∩  𝑓 )  | 
						
						
							| 344 | 
							
								
							 | 
							dfss2 | 
							⊢ ( ℎ  ⊆  𝑓  ↔  ( ℎ  ∩  𝑓 )  =  ℎ )  | 
						
						
							| 345 | 
							
								220 344
							 | 
							sylib | 
							⊢ ( ℎ  ⊊  𝑓  →  ( ℎ  ∩  𝑓 )  =  ℎ )  | 
						
						
							| 346 | 
							
								343 345
							 | 
							eqtrid | 
							⊢ ( ℎ  ⊊  𝑓  →  ( 𝑓  ∩  ℎ )  =  ℎ )  | 
						
						
							| 347 | 
							
								346
							 | 
							neeq1d | 
							⊢ ( ℎ  ⊊  𝑓  →  ( ( 𝑓  ∩  ℎ )  ≠  ∅  ↔  ℎ  ≠  ∅ ) )  | 
						
						
							| 348 | 
							
								347
							 | 
							biimpar | 
							⊢ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ( 𝑓  ∩  ℎ )  ≠  ∅ )  | 
						
						
							| 349 | 
							
								
							 | 
							disj4 | 
							⊢ ( ( 𝑓  ∩  ℎ )  =  ∅  ↔  ¬  ( 𝑓  ∖  ℎ )  ⊊  𝑓 )  | 
						
						
							| 350 | 
							
								349
							 | 
							bicomi | 
							⊢ ( ¬  ( 𝑓  ∖  ℎ )  ⊊  𝑓  ↔  ( 𝑓  ∩  ℎ )  =  ∅ )  | 
						
						
							| 351 | 
							
								350
							 | 
							necon1abii | 
							⊢ ( ( 𝑓  ∩  ℎ )  ≠  ∅  ↔  ( 𝑓  ∖  ℎ )  ⊊  𝑓 )  | 
						
						
							| 352 | 
							
								348 351
							 | 
							sylib | 
							⊢ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ( 𝑓  ∖  ℎ )  ⊊  𝑓 )  | 
						
						
							| 353 | 
							
								352
							 | 
							ad2antrl | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( 𝑓  ∖  ℎ )  ⊊  𝑓 )  | 
						
						
							| 354 | 
							
								128
							 | 
							difexi | 
							⊢ ( 𝑓  ∖  ℎ )  ∈  V  | 
						
						
							| 355 | 
							
								
							 | 
							psseq1 | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  ℎ )  →  ( 𝑎  ⊊  𝑓  ↔  ( 𝑓  ∖  ℎ )  ⊊  𝑓 ) )  | 
						
						
							| 356 | 
							
								
							 | 
							xpeq1 | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  ℎ )  →  ( 𝑎  ×  𝑏 )  =  ( ( 𝑓  ∖  ℎ )  ×  𝑏 ) )  | 
						
						
							| 357 | 
							
								356
							 | 
							pweqd | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  ℎ )  →  𝒫  ( 𝑎  ×  𝑏 )  =  𝒫  ( ( 𝑓  ∖  ℎ )  ×  𝑏 ) )  | 
						
						
							| 358 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  ℎ )  →  𝒫  𝑎  =  𝒫  ( 𝑓  ∖  ℎ ) )  | 
						
						
							| 359 | 
							
								358
							 | 
							raleqdv | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  ℎ )  →  ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( 𝑐  “  𝑑 ) ) )  | 
						
						
							| 360 | 
							
								
							 | 
							f1eq2 | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  ℎ )  →  ( 𝑒 : 𝑎 –1-1→ V  ↔  𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  | 
						
						
							| 361 | 
							
								360
							 | 
							rexbidv | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  ℎ )  →  ( ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V  ↔  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  | 
						
						
							| 362 | 
							
								359 361
							 | 
							imbi12d | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  ℎ )  →  ( ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V )  ↔  ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) ) )  | 
						
						
							| 363 | 
							
								357 362
							 | 
							raleqbidv | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  ℎ )  →  ( ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V )  ↔  ∀ 𝑐  ∈  𝒫  ( ( 𝑓  ∖  ℎ )  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) ) )  | 
						
						
							| 364 | 
							
								355 363
							 | 
							imbi12d | 
							⊢ ( 𝑎  =  ( 𝑓  ∖  ℎ )  →  ( ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) )  ↔  ( ( 𝑓  ∖  ℎ )  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( ( 𝑓  ∖  ℎ )  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) ) ) )  | 
						
						
							| 365 | 
							
								354 364
							 | 
							spcv | 
							⊢ ( ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) )  →  ( ( 𝑓  ∖  ℎ )  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( ( 𝑓  ∖  ℎ )  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) ) )  | 
						
						
							| 366 | 
							
								239 353 365
							 | 
							sylc | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∀ 𝑐  ∈  𝒫  ( ( 𝑓  ∖  ℎ )  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  | 
						
						
							| 367 | 
							
								
							 | 
							imaeq1 | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  ( 𝑐  “  𝑑 )  =  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 ) )  | 
						
						
							| 368 | 
							
								367
							 | 
							breq2d | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  ( 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 ) ) )  | 
						
						
							| 369 | 
							
								368
							 | 
							ralbidv | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( 𝑐  “  𝑑 )  ↔  ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 ) ) )  | 
						
						
							| 370 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  𝒫  𝑐  =  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) )  | 
						
						
							| 371 | 
							
								370
							 | 
							rexeqdv | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  ( ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V  ↔  ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  | 
						
						
							| 372 | 
							
								369 371
							 | 
							imbi12d | 
							⊢ ( 𝑐  =  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  ( ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V )  ↔  ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) ) )  | 
						
						
							| 373 | 
							
								372
							 | 
							rspcva | 
							⊢ ( ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∈  𝒫  ( ( 𝑓  ∖  ℎ )  ×  𝑏 )  ∧  ∀ 𝑐  ∈  𝒫  ( ( 𝑓  ∖  ℎ )  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  | 
						
						
							| 374 | 
							
								342 366 373
							 | 
							sylancr | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( ∀ 𝑑  ∈  𝒫  ( 𝑓  ∖  ℎ ) 𝑑  ≼  ( ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  | 
						
						
							| 375 | 
							
								334 374
							 | 
							mpd | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V )  | 
						
						
							| 376 | 
							
								
							 | 
							f1eq1 | 
							⊢ ( 𝑒  =  𝑗  →  ( 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V  ↔  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  | 
						
						
							| 377 | 
							
								376
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑒  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑒 : ( 𝑓  ∖  ℎ ) –1-1→ V  ↔  ∃ 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V )  | 
						
						
							| 378 | 
							
								375 377
							 | 
							sylib | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∃ 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V )  | 
						
						
							| 379 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  →  𝑖  ⊆  ( 𝑔  ↾  ℎ ) )  | 
						
						
							| 380 | 
							
								
							 | 
							resss | 
							⊢ ( 𝑔  ↾  ℎ )  ⊆  𝑔  | 
						
						
							| 381 | 
							
								379 380
							 | 
							sstrdi | 
							⊢ ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  →  𝑖  ⊆  𝑔 )  | 
						
						
							| 382 | 
							
								381
							 | 
							adantr | 
							⊢ ( ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V )  →  𝑖  ⊆  𝑔 )  | 
						
						
							| 383 | 
							
								382
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  𝑖  ⊆  𝑔 )  | 
						
						
							| 384 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  𝑗  ⊆  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) )  | 
						
						
							| 385 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ⊆  𝑔  | 
						
						
							| 386 | 
							
								384 385
							 | 
							sstrdi | 
							⊢ ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  𝑗  ⊆  𝑔 )  | 
						
						
							| 387 | 
							
								386
							 | 
							ad2antrl | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  𝑗  ⊆  𝑔 )  | 
						
						
							| 388 | 
							
								383 387
							 | 
							unssd | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( 𝑖  ∪  𝑗 )  ⊆  𝑔 )  | 
						
						
							| 389 | 
							
								45
							 | 
							elpw2 | 
							⊢ ( ( 𝑖  ∪  𝑗 )  ∈  𝒫  𝑔  ↔  ( 𝑖  ∪  𝑗 )  ⊆  𝑔 )  | 
						
						
							| 390 | 
							
								388 389
							 | 
							sylibr | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( 𝑖  ∪  𝑗 )  ∈  𝒫  𝑔 )  | 
						
						
							| 391 | 
							
								
							 | 
							f1f1orn | 
							⊢ ( 𝑖 : ℎ –1-1→ V  →  𝑖 : ℎ –1-1-onto→ ran  𝑖 )  | 
						
						
							| 392 | 
							
								391
							 | 
							adantl | 
							⊢ ( ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V )  →  𝑖 : ℎ –1-1-onto→ ran  𝑖 )  | 
						
						
							| 393 | 
							
								392
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  𝑖 : ℎ –1-1-onto→ ran  𝑖 )  | 
						
						
							| 394 | 
							
								
							 | 
							f1f1orn | 
							⊢ ( 𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V  →  𝑗 : ( 𝑓  ∖  ℎ ) –1-1-onto→ ran  𝑗 )  | 
						
						
							| 395 | 
							
								394
							 | 
							ad2antll | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  𝑗 : ( 𝑓  ∖  ℎ ) –1-1-onto→ ran  𝑗 )  | 
						
						
							| 396 | 
							
								
							 | 
							disjdif | 
							⊢ ( ℎ  ∩  ( 𝑓  ∖  ℎ ) )  =  ∅  | 
						
						
							| 397 | 
							
								396
							 | 
							a1i | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( ℎ  ∩  ( 𝑓  ∖  ℎ ) )  =  ∅ )  | 
						
						
							| 398 | 
							
								
							 | 
							rnss | 
							⊢ ( 𝑖  ⊆  ( 𝑔  ↾  ℎ )  →  ran  𝑖  ⊆  ran  ( 𝑔  ↾  ℎ ) )  | 
						
						
							| 399 | 
							
								379 398
							 | 
							syl | 
							⊢ ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  →  ran  𝑖  ⊆  ran  ( 𝑔  ↾  ℎ ) )  | 
						
						
							| 400 | 
							
								
							 | 
							df-ima | 
							⊢ ( 𝑔  “  ℎ )  =  ran  ( 𝑔  ↾  ℎ )  | 
						
						
							| 401 | 
							
								399 400
							 | 
							sseqtrrdi | 
							⊢ ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  →  ran  𝑖  ⊆  ( 𝑔  “  ℎ ) )  | 
						
						
							| 402 | 
							
								401
							 | 
							adantr | 
							⊢ ( ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V )  →  ran  𝑖  ⊆  ( 𝑔  “  ℎ ) )  | 
						
						
							| 403 | 
							
								402
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ran  𝑖  ⊆  ( 𝑔  “  ℎ ) )  | 
						
						
							| 404 | 
							
								
							 | 
							incom | 
							⊢ ( ( 𝑔  “  ℎ )  ∩  ran  𝑗 )  =  ( ran  𝑗  ∩  ( 𝑔  “  ℎ ) )  | 
						
						
							| 405 | 
							
								384 335
							 | 
							sstrdi | 
							⊢ ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  𝑗  ⊆  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  | 
						
						
							| 406 | 
							
								
							 | 
							rnss | 
							⊢ ( 𝑗  ⊆  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  →  ran  𝑗  ⊆  ran  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  | 
						
						
							| 407 | 
							
								405 406
							 | 
							syl | 
							⊢ ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  ran  𝑗  ⊆  ran  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  | 
						
						
							| 408 | 
							
								
							 | 
							rnxpss | 
							⊢ ran  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  ⊆  ( 𝑏  ∖  ( 𝑔  “  ℎ ) )  | 
						
						
							| 409 | 
							
								407 408
							 | 
							sstrdi | 
							⊢ ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  →  ran  𝑗  ⊆  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 410 | 
							
								409
							 | 
							ad2antrl | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ran  𝑗  ⊆  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) )  | 
						
						
							| 411 | 
							
								
							 | 
							disjdifr | 
							⊢ ( ( 𝑏  ∖  ( 𝑔  “  ℎ ) )  ∩  ( 𝑔  “  ℎ ) )  =  ∅  | 
						
						
							| 412 | 
							
								
							 | 
							ssdisj | 
							⊢ ( ( ran  𝑗  ⊆  ( 𝑏  ∖  ( 𝑔  “  ℎ ) )  ∧  ( ( 𝑏  ∖  ( 𝑔  “  ℎ ) )  ∩  ( 𝑔  “  ℎ ) )  =  ∅ )  →  ( ran  𝑗  ∩  ( 𝑔  “  ℎ ) )  =  ∅ )  | 
						
						
							| 413 | 
							
								410 411 412
							 | 
							sylancl | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( ran  𝑗  ∩  ( 𝑔  “  ℎ ) )  =  ∅ )  | 
						
						
							| 414 | 
							
								404 413
							 | 
							eqtrid | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( ( 𝑔  “  ℎ )  ∩  ran  𝑗 )  =  ∅ )  | 
						
						
							| 415 | 
							
								
							 | 
							ssdisj | 
							⊢ ( ( ran  𝑖  ⊆  ( 𝑔  “  ℎ )  ∧  ( ( 𝑔  “  ℎ )  ∩  ran  𝑗 )  =  ∅ )  →  ( ran  𝑖  ∩  ran  𝑗 )  =  ∅ )  | 
						
						
							| 416 | 
							
								403 414 415
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( ran  𝑖  ∩  ran  𝑗 )  =  ∅ )  | 
						
						
							| 417 | 
							
								
							 | 
							f1oun | 
							⊢ ( ( ( 𝑖 : ℎ –1-1-onto→ ran  𝑖  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1-onto→ ran  𝑗 )  ∧  ( ( ℎ  ∩  ( 𝑓  ∖  ℎ ) )  =  ∅  ∧  ( ran  𝑖  ∩  ran  𝑗 )  =  ∅ ) )  →  ( 𝑖  ∪  𝑗 ) : ( ℎ  ∪  ( 𝑓  ∖  ℎ ) ) –1-1-onto→ ( ran  𝑖  ∪  ran  𝑗 ) )  | 
						
						
							| 418 | 
							
								393 395 397 416 417
							 | 
							syl22anc | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( 𝑖  ∪  𝑗 ) : ( ℎ  ∪  ( 𝑓  ∖  ℎ ) ) –1-1-onto→ ( ran  𝑖  ∪  ran  𝑗 ) )  | 
						
						
							| 419 | 
							
								
							 | 
							undif | 
							⊢ ( ℎ  ⊆  𝑓  ↔  ( ℎ  ∪  ( 𝑓  ∖  ℎ ) )  =  𝑓 )  | 
						
						
							| 420 | 
							
								419
							 | 
							biimpi | 
							⊢ ( ℎ  ⊆  𝑓  →  ( ℎ  ∪  ( 𝑓  ∖  ℎ ) )  =  𝑓 )  | 
						
						
							| 421 | 
							
								420
							 | 
							adantl | 
							⊢ ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  →  ( ℎ  ∪  ( 𝑓  ∖  ℎ ) )  =  𝑓 )  | 
						
						
							| 422 | 
							
								421
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( ℎ  ∪  ( 𝑓  ∖  ℎ ) )  =  𝑓 )  | 
						
						
							| 423 | 
							
								422
							 | 
							f1oeq2d | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( ( 𝑖  ∪  𝑗 ) : ( ℎ  ∪  ( 𝑓  ∖  ℎ ) ) –1-1-onto→ ( ran  𝑖  ∪  ran  𝑗 )  ↔  ( 𝑖  ∪  𝑗 ) : 𝑓 –1-1-onto→ ( ran  𝑖  ∪  ran  𝑗 ) ) )  | 
						
						
							| 424 | 
							
								418 423
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( 𝑖  ∪  𝑗 ) : 𝑓 –1-1-onto→ ( ran  𝑖  ∪  ran  𝑗 ) )  | 
						
						
							| 425 | 
							
								
							 | 
							f1of1 | 
							⊢ ( ( 𝑖  ∪  𝑗 ) : 𝑓 –1-1-onto→ ( ran  𝑖  ∪  ran  𝑗 )  →  ( 𝑖  ∪  𝑗 ) : 𝑓 –1-1→ ( ran  𝑖  ∪  ran  𝑗 ) )  | 
						
						
							| 426 | 
							
								424 425
							 | 
							syl | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( 𝑖  ∪  𝑗 ) : 𝑓 –1-1→ ( ran  𝑖  ∪  ran  𝑗 ) )  | 
						
						
							| 427 | 
							
								
							 | 
							ssv | 
							⊢ ( ran  𝑖  ∪  ran  𝑗 )  ⊆  V  | 
						
						
							| 428 | 
							
								
							 | 
							f1ss | 
							⊢ ( ( ( 𝑖  ∪  𝑗 ) : 𝑓 –1-1→ ( ran  𝑖  ∪  ran  𝑗 )  ∧  ( ran  𝑖  ∪  ran  𝑗 )  ⊆  V )  →  ( 𝑖  ∪  𝑗 ) : 𝑓 –1-1→ V )  | 
						
						
							| 429 | 
							
								426 427 428
							 | 
							sylancl | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ( 𝑖  ∪  𝑗 ) : 𝑓 –1-1→ V )  | 
						
						
							| 430 | 
							
								
							 | 
							f1eq1 | 
							⊢ ( 𝑒  =  ( 𝑖  ∪  𝑗 )  →  ( 𝑒 : 𝑓 –1-1→ V  ↔  ( 𝑖  ∪  𝑗 ) : 𝑓 –1-1→ V ) )  | 
						
						
							| 431 | 
							
								430
							 | 
							rspcev | 
							⊢ ( ( ( 𝑖  ∪  𝑗 )  ∈  𝒫  𝑔  ∧  ( 𝑖  ∪  𝑗 ) : 𝑓 –1-1→ V )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 432 | 
							
								390 429 431
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  ∧  ( 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) )  ∧  𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 433 | 
							
								432
							 | 
							rexlimdvaa | 
							⊢ ( ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  ∧  ( 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ )  ∧  𝑖 : ℎ –1-1→ V ) )  →  ( ∃ 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 434 | 
							
								433
							 | 
							rexlimdvaa | 
							⊢ ( ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ℎ  ⊆  𝑓 )  →  ( ∃ 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ ) 𝑖 : ℎ –1-1→ V  →  ( ∃ 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) ) )  | 
						
						
							| 435 | 
							
								252 221 434
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ( ∃ 𝑖  ∈  𝒫  ( 𝑔  ↾  ℎ ) 𝑖 : ℎ –1-1→ V  →  ( ∃ 𝑗  ∈  𝒫  ( 𝑔  ∩  ( ( 𝑓  ∖  ℎ )  ×  ( 𝑏  ∖  ( 𝑔  “  ℎ ) ) ) ) 𝑗 : ( 𝑓  ∖  ℎ ) –1-1→ V  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) ) )  | 
						
						
							| 436 | 
							
								272 378 435
							 | 
							mp2d | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 437 | 
							
								436
							 | 
							ex | 
							⊢ ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  →  ( ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 438 | 
							
								437
							 | 
							exlimdv | 
							⊢ ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  →  ( ∃ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 439 | 
							
								438
							 | 
							imp | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ∃ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  ∧  ¬  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 440 | 
							
								218 439
							 | 
							sylan2br | 
							⊢ ( ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  ∧  ¬  ∀ ℎ ( ( ℎ  ⊊  𝑓  ∧  ℎ  ≠  ∅ )  →  ℎ  ≺  ( 𝑔  “  ℎ ) ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 441 | 
							
								217 440
							 | 
							pm2.61dan | 
							⊢ ( ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  ∧  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  ∧  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 ) ) )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  | 
						
						
							| 442 | 
							
								441
							 | 
							exp32 | 
							⊢ ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  →  ( 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 )  →  ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) ) )  | 
						
						
							| 443 | 
							
								442
							 | 
							ralrimiv | 
							⊢ ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  →  ∀ 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 444 | 
							
								
							 | 
							imaeq1 | 
							⊢ ( 𝑔  =  𝑐  →  ( 𝑔  “  𝑑 )  =  ( 𝑐  “  𝑑 ) )  | 
						
						
							| 445 | 
							
								444
							 | 
							breq2d | 
							⊢ ( 𝑔  =  𝑐  →  ( 𝑑  ≼  ( 𝑔  “  𝑑 )  ↔  𝑑  ≼  ( 𝑐  “  𝑑 ) ) )  | 
						
						
							| 446 | 
							
								445
							 | 
							ralbidv | 
							⊢ ( 𝑔  =  𝑐  →  ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 )  ↔  ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 ) ) )  | 
						
						
							| 447 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑔  =  𝑐  →  𝒫  𝑔  =  𝒫  𝑐 )  | 
						
						
							| 448 | 
							
								447
							 | 
							rexeqdv | 
							⊢ ( 𝑔  =  𝑐  →  ( ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V  ↔  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 449 | 
							
								446 448
							 | 
							imbi12d | 
							⊢ ( 𝑔  =  𝑐  →  ( ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  ↔  ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) ) )  | 
						
						
							| 450 | 
							
								449
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑔  ∈  𝒫  ( 𝑓  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑔  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑔 𝑒 : 𝑓 –1-1→ V )  ↔  ∀ 𝑐  ∈  𝒫  ( 𝑓  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 451 | 
							
								443 450
							 | 
							sylib | 
							⊢ ( ( ( 𝑓  ∈  Fin  ∧  𝑏  ∈  Fin )  ∧  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  →  ∀ 𝑐  ∈  𝒫  ( 𝑓  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) )  | 
						
						
							| 452 | 
							
								451
							 | 
							exp31 | 
							⊢ ( 𝑓  ∈  Fin  →  ( 𝑏  ∈  Fin  →  ( ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) )  →  ∀ 𝑐  ∈  𝒫  ( 𝑓  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) )  | 
						
						
							| 453 | 
							
								452
							 | 
							a2d | 
							⊢ ( 𝑓  ∈  Fin  →  ( ( 𝑏  ∈  Fin  →  ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  →  ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝑓  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) )  | 
						
						
							| 454 | 
							
								22 453
							 | 
							biimtrid | 
							⊢ ( 𝑓  ∈  Fin  →  ( ∀ 𝑎 ( 𝑎  ⊊  𝑓  →  ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝑎  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑎 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑎 –1-1→ V ) ) )  →  ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝑓  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝑓 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) )  | 
						
						
							| 455 | 
							
								9 18 454
							 | 
							findcard3 | 
							⊢ ( 𝐴  ∈  Fin  →  ( 𝑏  ∈  Fin  →  ∀ 𝑐  ∈  𝒫  ( 𝐴  ×  𝑏 ) ( ∀ 𝑑  ∈  𝒫  𝐴 𝑑  ≼  ( 𝑐  “  𝑑 )  →  ∃ 𝑒  ∈  𝒫  𝑐 𝑒 : 𝐴 –1-1→ V ) ) )  |