Step |
Hyp |
Ref |
Expression |
1 |
|
xpeq1 |
⊢ ( 𝑎 = 𝑓 → ( 𝑎 × 𝑏 ) = ( 𝑓 × 𝑏 ) ) |
2 |
1
|
pweqd |
⊢ ( 𝑎 = 𝑓 → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( 𝑓 × 𝑏 ) ) |
3 |
|
pweq |
⊢ ( 𝑎 = 𝑓 → 𝒫 𝑎 = 𝒫 𝑓 ) |
4 |
3
|
raleqdv |
⊢ ( 𝑎 = 𝑓 → ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) ) ) |
5 |
|
f1eq2 |
⊢ ( 𝑎 = 𝑓 → ( 𝑒 : 𝑎 –1-1→ V ↔ 𝑒 : 𝑓 –1-1→ V ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑎 = 𝑓 → ( ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ↔ ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) |
7 |
4 6
|
imbi12d |
⊢ ( 𝑎 = 𝑓 → ( ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ↔ ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) |
8 |
2 7
|
raleqbidv |
⊢ ( 𝑎 = 𝑓 → ( ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ↔ ∀ 𝑐 ∈ 𝒫 ( 𝑓 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑎 = 𝑓 → ( ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ↔ ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝑓 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) ) |
10 |
|
xpeq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 × 𝑏 ) = ( 𝐴 × 𝑏 ) ) |
11 |
10
|
pweqd |
⊢ ( 𝑎 = 𝐴 → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( 𝐴 × 𝑏 ) ) |
12 |
|
pweq |
⊢ ( 𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴 ) |
13 |
12
|
raleqdv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) ) ) |
14 |
|
f1eq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑒 : 𝑎 –1-1→ V ↔ 𝑒 : 𝐴 –1-1→ V ) ) |
15 |
14
|
rexbidv |
⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ↔ ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝐴 –1-1→ V ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ↔ ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝐴 –1-1→ V ) ) ) |
17 |
11 16
|
raleqbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ↔ ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝐴 –1-1→ V ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ↔ ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝐴 –1-1→ V ) ) ) ) |
19 |
|
bi2.04 |
⊢ ( ( 𝑎 ⊊ 𝑓 → ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ↔ ( 𝑏 ∈ Fin → ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ) |
20 |
19
|
albii |
⊢ ( ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ↔ ∀ 𝑎 ( 𝑏 ∈ Fin → ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ) |
21 |
|
19.21v |
⊢ ( ∀ 𝑎 ( 𝑏 ∈ Fin → ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ↔ ( 𝑏 ∈ Fin → ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ) |
22 |
20 21
|
bitri |
⊢ ( ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ↔ ( 𝑏 ∈ Fin → ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ) |
23 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑔 |
24 |
|
f10 |
⊢ ∅ : ∅ –1-1→ V |
25 |
|
f1eq1 |
⊢ ( 𝑒 = ∅ → ( 𝑒 : ∅ –1-1→ V ↔ ∅ : ∅ –1-1→ V ) ) |
26 |
25
|
rspcev |
⊢ ( ( ∅ ∈ 𝒫 𝑔 ∧ ∅ : ∅ –1-1→ V ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : ∅ –1-1→ V ) |
27 |
23 24 26
|
mp2an |
⊢ ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : ∅ –1-1→ V |
28 |
|
f1eq2 |
⊢ ( 𝑓 = ∅ → ( 𝑒 : 𝑓 –1-1→ V ↔ 𝑒 : ∅ –1-1→ V ) ) |
29 |
28
|
rexbidv |
⊢ ( 𝑓 = ∅ → ( ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ↔ ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : ∅ –1-1→ V ) ) |
30 |
27 29
|
mpbiri |
⊢ ( 𝑓 = ∅ → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
31 |
30
|
a1i |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( 𝑓 = ∅ → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
32 |
|
n0 |
⊢ ( 𝑓 ≠ ∅ ↔ ∃ 𝑖 𝑖 ∈ 𝑓 ) |
33 |
|
snelpwi |
⊢ ( 𝑖 ∈ 𝑓 → { 𝑖 } ∈ 𝒫 𝑓 ) |
34 |
|
id |
⊢ ( 𝑑 = { 𝑖 } → 𝑑 = { 𝑖 } ) |
35 |
|
imaeq2 |
⊢ ( 𝑑 = { 𝑖 } → ( 𝑔 “ 𝑑 ) = ( 𝑔 “ { 𝑖 } ) ) |
36 |
34 35
|
breq12d |
⊢ ( 𝑑 = { 𝑖 } → ( 𝑑 ≼ ( 𝑔 “ 𝑑 ) ↔ { 𝑖 } ≼ ( 𝑔 “ { 𝑖 } ) ) ) |
37 |
36
|
rspcva |
⊢ ( ( { 𝑖 } ∈ 𝒫 𝑓 ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) → { 𝑖 } ≼ ( 𝑔 “ { 𝑖 } ) ) |
38 |
|
vex |
⊢ 𝑖 ∈ V |
39 |
38
|
snnz |
⊢ { 𝑖 } ≠ ∅ |
40 |
|
snex |
⊢ { 𝑖 } ∈ V |
41 |
40
|
0sdom |
⊢ ( ∅ ≺ { 𝑖 } ↔ { 𝑖 } ≠ ∅ ) |
42 |
39 41
|
mpbir |
⊢ ∅ ≺ { 𝑖 } |
43 |
|
sdomdomtr |
⊢ ( ( ∅ ≺ { 𝑖 } ∧ { 𝑖 } ≼ ( 𝑔 “ { 𝑖 } ) ) → ∅ ≺ ( 𝑔 “ { 𝑖 } ) ) |
44 |
42 43
|
mpan |
⊢ ( { 𝑖 } ≼ ( 𝑔 “ { 𝑖 } ) → ∅ ≺ ( 𝑔 “ { 𝑖 } ) ) |
45 |
|
vex |
⊢ 𝑔 ∈ V |
46 |
45
|
imaex |
⊢ ( 𝑔 “ { 𝑖 } ) ∈ V |
47 |
46
|
0sdom |
⊢ ( ∅ ≺ ( 𝑔 “ { 𝑖 } ) ↔ ( 𝑔 “ { 𝑖 } ) ≠ ∅ ) |
48 |
44 47
|
sylib |
⊢ ( { 𝑖 } ≼ ( 𝑔 “ { 𝑖 } ) → ( 𝑔 “ { 𝑖 } ) ≠ ∅ ) |
49 |
37 48
|
syl |
⊢ ( ( { 𝑖 } ∈ 𝒫 𝑓 ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) → ( 𝑔 “ { 𝑖 } ) ≠ ∅ ) |
50 |
49
|
expcom |
⊢ ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) → ( { 𝑖 } ∈ 𝒫 𝑓 → ( 𝑔 “ { 𝑖 } ) ≠ ∅ ) ) |
51 |
33 50
|
syl5 |
⊢ ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) → ( 𝑖 ∈ 𝑓 → ( 𝑔 “ { 𝑖 } ) ≠ ∅ ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) → ( 𝑖 ∈ 𝑓 → ( 𝑔 “ { 𝑖 } ) ≠ ∅ ) ) |
53 |
52
|
ad2antlr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( 𝑖 ∈ 𝑓 → ( 𝑔 “ { 𝑖 } ) ≠ ∅ ) ) |
54 |
53
|
impr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ) → ( 𝑔 “ { 𝑖 } ) ≠ ∅ ) |
55 |
|
n0 |
⊢ ( ( 𝑔 “ { 𝑖 } ) ≠ ∅ ↔ ∃ 𝑗 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) |
56 |
54 55
|
sylib |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ) → ∃ 𝑗 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) |
57 |
45
|
imaex |
⊢ ( 𝑔 “ 𝑐 ) ∈ V |
58 |
57
|
difexi |
⊢ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ∈ V |
59 |
58
|
0dom |
⊢ ∅ ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) |
60 |
|
breq1 |
⊢ ( 𝑐 = ∅ → ( 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ↔ ∅ ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) ) |
61 |
59 60
|
mpbiri |
⊢ ( 𝑐 = ∅ → 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
62 |
61
|
a1i |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ) → ( 𝑐 = ∅ → 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) ) |
63 |
|
simpll |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ∧ 𝑐 ≠ ∅ ) ) → ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) |
64 |
|
elpwi |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) → 𝑐 ⊆ ( 𝑓 ∖ { 𝑖 } ) ) |
65 |
64
|
ad2antrl |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ∧ 𝑐 ≠ ∅ ) ) → 𝑐 ⊆ ( 𝑓 ∖ { 𝑖 } ) ) |
66 |
|
difsnpss |
⊢ ( 𝑖 ∈ 𝑓 ↔ ( 𝑓 ∖ { 𝑖 } ) ⊊ 𝑓 ) |
67 |
66
|
biimpi |
⊢ ( 𝑖 ∈ 𝑓 → ( 𝑓 ∖ { 𝑖 } ) ⊊ 𝑓 ) |
68 |
67
|
ad2antlr |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ∧ 𝑐 ≠ ∅ ) ) → ( 𝑓 ∖ { 𝑖 } ) ⊊ 𝑓 ) |
69 |
65 68
|
sspsstrd |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ∧ 𝑐 ≠ ∅ ) ) → 𝑐 ⊊ 𝑓 ) |
70 |
|
simprr |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ∧ 𝑐 ≠ ∅ ) ) → 𝑐 ≠ ∅ ) |
71 |
69 70
|
jca |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ∧ 𝑐 ≠ ∅ ) ) → ( 𝑐 ⊊ 𝑓 ∧ 𝑐 ≠ ∅ ) ) |
72 |
|
psseq1 |
⊢ ( ℎ = 𝑐 → ( ℎ ⊊ 𝑓 ↔ 𝑐 ⊊ 𝑓 ) ) |
73 |
|
neeq1 |
⊢ ( ℎ = 𝑐 → ( ℎ ≠ ∅ ↔ 𝑐 ≠ ∅ ) ) |
74 |
72 73
|
anbi12d |
⊢ ( ℎ = 𝑐 → ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ↔ ( 𝑐 ⊊ 𝑓 ∧ 𝑐 ≠ ∅ ) ) ) |
75 |
|
id |
⊢ ( ℎ = 𝑐 → ℎ = 𝑐 ) |
76 |
|
imaeq2 |
⊢ ( ℎ = 𝑐 → ( 𝑔 “ ℎ ) = ( 𝑔 “ 𝑐 ) ) |
77 |
75 76
|
breq12d |
⊢ ( ℎ = 𝑐 → ( ℎ ≺ ( 𝑔 “ ℎ ) ↔ 𝑐 ≺ ( 𝑔 “ 𝑐 ) ) ) |
78 |
74 77
|
imbi12d |
⊢ ( ℎ = 𝑐 → ( ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ↔ ( ( 𝑐 ⊊ 𝑓 ∧ 𝑐 ≠ ∅ ) → 𝑐 ≺ ( 𝑔 “ 𝑐 ) ) ) ) |
79 |
78
|
spvv |
⊢ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) → ( ( 𝑐 ⊊ 𝑓 ∧ 𝑐 ≠ ∅ ) → 𝑐 ≺ ( 𝑔 “ 𝑐 ) ) ) |
80 |
63 71 79
|
sylc |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ∧ 𝑐 ≠ ∅ ) ) → 𝑐 ≺ ( 𝑔 “ 𝑐 ) ) |
81 |
|
domdifsn |
⊢ ( 𝑐 ≺ ( 𝑔 “ 𝑐 ) → 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
82 |
80 81
|
syl |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ∧ 𝑐 ≠ ∅ ) ) → 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
83 |
82
|
expr |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ) → ( 𝑐 ≠ ∅ → 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) ) |
84 |
62 83
|
pm2.61dne |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ) → 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
85 |
84
|
adantlrr |
⊢ ( ( ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ) → 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
86 |
85
|
adantll |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ) → 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
87 |
|
df-ss |
⊢ ( 𝑐 ⊆ ( 𝑓 ∖ { 𝑖 } ) ↔ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) = 𝑐 ) |
88 |
64 87
|
sylib |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) → ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) = 𝑐 ) |
89 |
88
|
imaeq2d |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) → ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) ) = ( 𝑔 “ 𝑐 ) ) |
90 |
89
|
ineq1d |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) → ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) = ( ( 𝑔 “ 𝑐 ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) ) |
91 |
90
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ) → ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) = ( ( 𝑔 “ 𝑐 ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) ) |
92 |
|
indif2 |
⊢ ( ( 𝑔 “ 𝑐 ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) = ( ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) ∖ { 𝑗 } ) |
93 |
|
imassrn |
⊢ ( 𝑔 “ 𝑐 ) ⊆ ran 𝑔 |
94 |
|
elpwi |
⊢ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) → 𝑔 ⊆ ( 𝑓 × 𝑏 ) ) |
95 |
|
rnss |
⊢ ( 𝑔 ⊆ ( 𝑓 × 𝑏 ) → ran 𝑔 ⊆ ran ( 𝑓 × 𝑏 ) ) |
96 |
|
rnxpss |
⊢ ran ( 𝑓 × 𝑏 ) ⊆ 𝑏 |
97 |
95 96
|
sstrdi |
⊢ ( 𝑔 ⊆ ( 𝑓 × 𝑏 ) → ran 𝑔 ⊆ 𝑏 ) |
98 |
94 97
|
syl |
⊢ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) → ran 𝑔 ⊆ 𝑏 ) |
99 |
93 98
|
sstrid |
⊢ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) → ( 𝑔 “ 𝑐 ) ⊆ 𝑏 ) |
100 |
|
df-ss |
⊢ ( ( 𝑔 “ 𝑐 ) ⊆ 𝑏 ↔ ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) = ( 𝑔 “ 𝑐 ) ) |
101 |
99 100
|
sylib |
⊢ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) → ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) = ( 𝑔 “ 𝑐 ) ) |
102 |
101
|
difeq1d |
⊢ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) → ( ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) ∖ { 𝑗 } ) = ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
103 |
102
|
ad2antrl |
⊢ ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) → ( ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) ∖ { 𝑗 } ) = ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
104 |
92 103
|
eqtrid |
⊢ ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) → ( ( 𝑔 “ 𝑐 ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) = ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
105 |
104
|
ad2antrr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ) → ( ( 𝑔 “ 𝑐 ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) = ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
106 |
91 105
|
eqtrd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ) → ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) = ( ( 𝑔 “ 𝑐 ) ∖ { 𝑗 } ) ) |
107 |
86 106
|
breqtrrd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) ) → 𝑐 ≼ ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) ) |
108 |
107
|
ralrimiva |
⊢ ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ∀ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑐 ≼ ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) ) |
109 |
|
id |
⊢ ( 𝑐 = 𝑑 → 𝑐 = 𝑑 ) |
110 |
|
imainrect |
⊢ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑐 ) = ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) |
111 |
|
imaeq2 |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑐 ) = ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) ) |
112 |
110 111
|
eqtr3id |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) = ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) ) |
113 |
109 112
|
breq12d |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ≼ ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) ↔ 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) ) ) |
114 |
113
|
cbvralvw |
⊢ ( ∀ 𝑐 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑐 ≼ ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ { 𝑖 } ) ) ) ∩ ( 𝑏 ∖ { 𝑗 } ) ) ↔ ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) ) |
115 |
108 114
|
sylib |
⊢ ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) ) |
116 |
115
|
adantllr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) ) |
117 |
|
inss2 |
⊢ ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ⊆ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) |
118 |
|
difss |
⊢ ( 𝑏 ∖ { 𝑗 } ) ⊆ 𝑏 |
119 |
|
xpss2 |
⊢ ( ( 𝑏 ∖ { 𝑗 } ) ⊆ 𝑏 → ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ⊆ ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ) |
120 |
118 119
|
ax-mp |
⊢ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ⊆ ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) |
121 |
117 120
|
sstri |
⊢ ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ⊆ ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) |
122 |
45
|
inex1 |
⊢ ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∈ V |
123 |
122
|
elpw |
⊢ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∈ 𝒫 ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ↔ ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ⊆ ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ) |
124 |
121 123
|
mpbir |
⊢ ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∈ 𝒫 ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) |
125 |
|
simpllr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) |
126 |
67
|
adantr |
⊢ ( ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) → ( 𝑓 ∖ { 𝑖 } ) ⊊ 𝑓 ) |
127 |
126
|
ad2antll |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ( 𝑓 ∖ { 𝑖 } ) ⊊ 𝑓 ) |
128 |
|
vex |
⊢ 𝑓 ∈ V |
129 |
128
|
difexi |
⊢ ( 𝑓 ∖ { 𝑖 } ) ∈ V |
130 |
|
psseq1 |
⊢ ( 𝑎 = ( 𝑓 ∖ { 𝑖 } ) → ( 𝑎 ⊊ 𝑓 ↔ ( 𝑓 ∖ { 𝑖 } ) ⊊ 𝑓 ) ) |
131 |
|
xpeq1 |
⊢ ( 𝑎 = ( 𝑓 ∖ { 𝑖 } ) → ( 𝑎 × 𝑏 ) = ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ) |
132 |
131
|
pweqd |
⊢ ( 𝑎 = ( 𝑓 ∖ { 𝑖 } ) → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ) |
133 |
|
pweq |
⊢ ( 𝑎 = ( 𝑓 ∖ { 𝑖 } ) → 𝒫 𝑎 = 𝒫 ( 𝑓 ∖ { 𝑖 } ) ) |
134 |
133
|
raleqdv |
⊢ ( 𝑎 = ( 𝑓 ∖ { 𝑖 } ) → ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) ) ) |
135 |
|
f1eq2 |
⊢ ( 𝑎 = ( 𝑓 ∖ { 𝑖 } ) → ( 𝑒 : 𝑎 –1-1→ V ↔ 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) |
136 |
135
|
rexbidv |
⊢ ( 𝑎 = ( 𝑓 ∖ { 𝑖 } ) → ( ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ↔ ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) |
137 |
134 136
|
imbi12d |
⊢ ( 𝑎 = ( 𝑓 ∖ { 𝑖 } ) → ( ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ↔ ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) ) |
138 |
132 137
|
raleqbidv |
⊢ ( 𝑎 = ( 𝑓 ∖ { 𝑖 } ) → ( ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ↔ ∀ 𝑐 ∈ 𝒫 ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) ) |
139 |
130 138
|
imbi12d |
⊢ ( 𝑎 = ( 𝑓 ∖ { 𝑖 } ) → ( ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ↔ ( ( 𝑓 ∖ { 𝑖 } ) ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) ) ) |
140 |
129 139
|
spcv |
⊢ ( ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) → ( ( 𝑓 ∖ { 𝑖 } ) ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) ) |
141 |
125 127 140
|
sylc |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ∀ 𝑐 ∈ 𝒫 ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) |
142 |
|
imaeq1 |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → ( 𝑐 “ 𝑑 ) = ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) ) |
143 |
142
|
breq2d |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → ( 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) ) ) |
144 |
143
|
ralbidv |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) ) ) |
145 |
|
pweq |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → 𝒫 𝑐 = 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ) |
146 |
145
|
rexeqdv |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → ( ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ↔ ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) |
147 |
144 146
|
imbi12d |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → ( ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ↔ ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) ) |
148 |
147
|
rspcva |
⊢ ( ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∈ 𝒫 ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ∧ ∀ 𝑐 ∈ 𝒫 ( ( 𝑓 ∖ { 𝑖 } ) × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) → ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) |
149 |
124 141 148
|
sylancr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ { 𝑖 } ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) |
150 |
116 149
|
mpd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) |
151 |
|
f1eq1 |
⊢ ( 𝑒 = 𝑘 → ( 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ↔ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) |
152 |
151
|
cbvrexvw |
⊢ ( ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑒 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ↔ ∃ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) |
153 |
150 152
|
sylib |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ∃ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) |
154 |
|
vex |
⊢ 𝑗 ∈ V |
155 |
38 154
|
elimasn |
⊢ ( 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ↔ 〈 𝑖 , 𝑗 〉 ∈ 𝑔 ) |
156 |
155
|
biimpi |
⊢ ( 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) → 〈 𝑖 , 𝑗 〉 ∈ 𝑔 ) |
157 |
156
|
snssd |
⊢ ( 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) → { 〈 𝑖 , 𝑗 〉 } ⊆ 𝑔 ) |
158 |
157
|
ad2antlr |
⊢ ( ( ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ∧ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ) → { 〈 𝑖 , 𝑗 〉 } ⊆ 𝑔 ) |
159 |
|
elpwi |
⊢ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → 𝑘 ⊆ ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ) |
160 |
|
inss1 |
⊢ ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ⊆ 𝑔 |
161 |
159 160
|
sstrdi |
⊢ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → 𝑘 ⊆ 𝑔 ) |
162 |
161
|
adantl |
⊢ ( ( ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ∧ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ) → 𝑘 ⊆ 𝑔 ) |
163 |
158 162
|
unssd |
⊢ ( ( ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ∧ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) ⊆ 𝑔 ) |
164 |
45
|
elpw2 |
⊢ ( ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) ∈ 𝒫 𝑔 ↔ ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) ⊆ 𝑔 ) |
165 |
163 164
|
sylibr |
⊢ ( ( ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ∧ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) ∈ 𝒫 𝑔 ) |
166 |
165
|
ad2ant2lr |
⊢ ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ∧ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) ∈ 𝒫 𝑔 ) |
167 |
38 154
|
f1osn |
⊢ { 〈 𝑖 , 𝑗 〉 } : { 𝑖 } –1-1-onto→ { 𝑗 } |
168 |
167
|
a1i |
⊢ ( ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) → { 〈 𝑖 , 𝑗 〉 } : { 𝑖 } –1-1-onto→ { 𝑗 } ) |
169 |
|
f1f1orn |
⊢ ( 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V → 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1-onto→ ran 𝑘 ) |
170 |
169
|
adantl |
⊢ ( ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) → 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1-onto→ ran 𝑘 ) |
171 |
|
disjdif |
⊢ ( { 𝑖 } ∩ ( 𝑓 ∖ { 𝑖 } ) ) = ∅ |
172 |
171
|
a1i |
⊢ ( ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) → ( { 𝑖 } ∩ ( 𝑓 ∖ { 𝑖 } ) ) = ∅ ) |
173 |
|
incom |
⊢ ( { 𝑗 } ∩ ran 𝑘 ) = ( ran 𝑘 ∩ { 𝑗 } ) |
174 |
159 117
|
sstrdi |
⊢ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → 𝑘 ⊆ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) |
175 |
|
rnss |
⊢ ( 𝑘 ⊆ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) → ran 𝑘 ⊆ ran ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) |
176 |
|
rnxpss |
⊢ ran ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ⊆ ( 𝑏 ∖ { 𝑗 } ) |
177 |
175 176
|
sstrdi |
⊢ ( 𝑘 ⊆ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) → ran 𝑘 ⊆ ( 𝑏 ∖ { 𝑗 } ) ) |
178 |
174 177
|
syl |
⊢ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → ran 𝑘 ⊆ ( 𝑏 ∖ { 𝑗 } ) ) |
179 |
|
disjdifr |
⊢ ( ( 𝑏 ∖ { 𝑗 } ) ∩ { 𝑗 } ) = ∅ |
180 |
|
ssdisj |
⊢ ( ( ran 𝑘 ⊆ ( 𝑏 ∖ { 𝑗 } ) ∧ ( ( 𝑏 ∖ { 𝑗 } ) ∩ { 𝑗 } ) = ∅ ) → ( ran 𝑘 ∩ { 𝑗 } ) = ∅ ) |
181 |
178 179 180
|
sylancl |
⊢ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → ( ran 𝑘 ∩ { 𝑗 } ) = ∅ ) |
182 |
173 181
|
eqtrid |
⊢ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) → ( { 𝑗 } ∩ ran 𝑘 ) = ∅ ) |
183 |
182
|
adantr |
⊢ ( ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) → ( { 𝑗 } ∩ ran 𝑘 ) = ∅ ) |
184 |
|
f1oun |
⊢ ( ( ( { 〈 𝑖 , 𝑗 〉 } : { 𝑖 } –1-1-onto→ { 𝑗 } ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1-onto→ ran 𝑘 ) ∧ ( ( { 𝑖 } ∩ ( 𝑓 ∖ { 𝑖 } ) ) = ∅ ∧ ( { 𝑗 } ∩ ran 𝑘 ) = ∅ ) ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : ( { 𝑖 } ∪ ( 𝑓 ∖ { 𝑖 } ) ) –1-1-onto→ ( { 𝑗 } ∪ ran 𝑘 ) ) |
185 |
168 170 172 183 184
|
syl22anc |
⊢ ( ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : ( { 𝑖 } ∪ ( 𝑓 ∖ { 𝑖 } ) ) –1-1-onto→ ( { 𝑗 } ∪ ran 𝑘 ) ) |
186 |
185
|
adantl |
⊢ ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ∧ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : ( { 𝑖 } ∪ ( 𝑓 ∖ { 𝑖 } ) ) –1-1-onto→ ( { 𝑗 } ∪ ran 𝑘 ) ) |
187 |
|
snssi |
⊢ ( 𝑖 ∈ 𝑓 → { 𝑖 } ⊆ 𝑓 ) |
188 |
187
|
ad2antrl |
⊢ ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) → { 𝑖 } ⊆ 𝑓 ) |
189 |
|
undif |
⊢ ( { 𝑖 } ⊆ 𝑓 ↔ ( { 𝑖 } ∪ ( 𝑓 ∖ { 𝑖 } ) ) = 𝑓 ) |
190 |
188 189
|
sylib |
⊢ ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) → ( { 𝑖 } ∪ ( 𝑓 ∖ { 𝑖 } ) ) = 𝑓 ) |
191 |
190
|
f1oeq2d |
⊢ ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) → ( ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : ( { 𝑖 } ∪ ( 𝑓 ∖ { 𝑖 } ) ) –1-1-onto→ ( { 𝑗 } ∪ ran 𝑘 ) ↔ ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1-onto→ ( { 𝑗 } ∪ ran 𝑘 ) ) ) |
192 |
191
|
adantr |
⊢ ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ∧ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) → ( ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : ( { 𝑖 } ∪ ( 𝑓 ∖ { 𝑖 } ) ) –1-1-onto→ ( { 𝑗 } ∪ ran 𝑘 ) ↔ ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1-onto→ ( { 𝑗 } ∪ ran 𝑘 ) ) ) |
193 |
186 192
|
mpbid |
⊢ ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ∧ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1-onto→ ( { 𝑗 } ∪ ran 𝑘 ) ) |
194 |
|
f1of1 |
⊢ ( ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1-onto→ ( { 𝑗 } ∪ ran 𝑘 ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1→ ( { 𝑗 } ∪ ran 𝑘 ) ) |
195 |
|
ssv |
⊢ ( { 𝑗 } ∪ ran 𝑘 ) ⊆ V |
196 |
|
f1ss |
⊢ ( ( ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1→ ( { 𝑗 } ∪ ran 𝑘 ) ∧ ( { 𝑗 } ∪ ran 𝑘 ) ⊆ V ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1→ V ) |
197 |
194 195 196
|
sylancl |
⊢ ( ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1-onto→ ( { 𝑗 } ∪ ran 𝑘 ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1→ V ) |
198 |
193 197
|
syl |
⊢ ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ∧ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) → ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1→ V ) |
199 |
|
f1eq1 |
⊢ ( 𝑒 = ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) → ( 𝑒 : 𝑓 –1-1→ V ↔ ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1→ V ) ) |
200 |
199
|
rspcev |
⊢ ( ( ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) ∈ 𝒫 𝑔 ∧ ( { 〈 𝑖 , 𝑗 〉 } ∪ 𝑘 ) : 𝑓 –1-1→ V ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
201 |
166 198 200
|
syl2anc |
⊢ ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ∧ ( 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) ∧ 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
202 |
201
|
rexlimdvaa |
⊢ ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) → ( ∃ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
203 |
202
|
ex |
⊢ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) → ( ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) → ( ∃ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) ) |
204 |
203
|
adantr |
⊢ ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) → ( ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) → ( ∃ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) ) |
205 |
204
|
ad2antlr |
⊢ ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) → ( ∃ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) ) |
206 |
205
|
impr |
⊢ ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ( ∃ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
207 |
206
|
adantllr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ( ∃ 𝑘 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ { 𝑖 } ) × ( 𝑏 ∖ { 𝑗 } ) ) ) 𝑘 : ( 𝑓 ∖ { 𝑖 } ) –1-1→ V → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
208 |
153 207
|
mpd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
209 |
208
|
expr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( ( 𝑖 ∈ 𝑓 ∧ 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
210 |
209
|
expd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( 𝑖 ∈ 𝑓 → ( 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) ) |
211 |
210
|
impr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ) → ( 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
212 |
211
|
exlimdv |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ) → ( ∃ 𝑗 𝑗 ∈ ( 𝑔 “ { 𝑖 } ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
213 |
56 212
|
mpd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ∧ 𝑖 ∈ 𝑓 ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
214 |
213
|
expr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( 𝑖 ∈ 𝑓 → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
215 |
214
|
exlimdv |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( ∃ 𝑖 𝑖 ∈ 𝑓 → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
216 |
32 215
|
syl5bi |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( 𝑓 ≠ ∅ → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
217 |
31 216
|
pm2.61dne |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
218 |
|
exanali |
⊢ ( ∃ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ↔ ¬ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) |
219 |
|
simprll |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ℎ ⊊ 𝑓 ) |
220 |
|
pssss |
⊢ ( ℎ ⊊ 𝑓 → ℎ ⊆ 𝑓 ) |
221 |
219 220
|
syl |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ℎ ⊆ 𝑓 ) |
222 |
221
|
sspwd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → 𝒫 ℎ ⊆ 𝒫 𝑓 ) |
223 |
|
simplrr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) |
224 |
|
ssralv |
⊢ ( 𝒫 ℎ ⊆ 𝒫 𝑓 → ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) → ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) |
225 |
222 223 224
|
sylc |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) |
226 |
|
elpwi |
⊢ ( 𝑑 ∈ 𝒫 ℎ → 𝑑 ⊆ ℎ ) |
227 |
|
resima2 |
⊢ ( 𝑑 ⊆ ℎ → ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) = ( 𝑔 “ 𝑑 ) ) |
228 |
226 227
|
syl |
⊢ ( 𝑑 ∈ 𝒫 ℎ → ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) = ( 𝑔 “ 𝑑 ) ) |
229 |
228
|
eqcomd |
⊢ ( 𝑑 ∈ 𝒫 ℎ → ( 𝑔 “ 𝑑 ) = ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) ) |
230 |
229
|
breq2d |
⊢ ( 𝑑 ∈ 𝒫 ℎ → ( 𝑑 ≼ ( 𝑔 “ 𝑑 ) ↔ 𝑑 ≼ ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) ) ) |
231 |
230
|
ralbiia |
⊢ ( ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑔 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) ) |
232 |
225 231
|
sylib |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) ) |
233 |
|
imaeq1 |
⊢ ( 𝑐 = ( 𝑔 ↾ ℎ ) → ( 𝑐 “ 𝑑 ) = ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) ) |
234 |
233
|
breq2d |
⊢ ( 𝑐 = ( 𝑔 ↾ ℎ ) → ( 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ 𝑑 ≼ ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) ) ) |
235 |
234
|
ralbidv |
⊢ ( 𝑐 = ( 𝑔 ↾ ℎ ) → ( ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) ) ) |
236 |
|
pweq |
⊢ ( 𝑐 = ( 𝑔 ↾ ℎ ) → 𝒫 𝑐 = 𝒫 ( 𝑔 ↾ ℎ ) ) |
237 |
236
|
rexeqdv |
⊢ ( 𝑐 = ( 𝑔 ↾ ℎ ) → ( ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ℎ –1-1→ V ↔ ∃ 𝑒 ∈ 𝒫 ( 𝑔 ↾ ℎ ) 𝑒 : ℎ –1-1→ V ) ) |
238 |
235 237
|
imbi12d |
⊢ ( 𝑐 = ( 𝑔 ↾ ℎ ) → ( ( ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ℎ –1-1→ V ) ↔ ( ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ↾ ℎ ) 𝑒 : ℎ –1-1→ V ) ) ) |
239 |
|
simpllr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) |
240 |
|
psseq1 |
⊢ ( 𝑎 = ℎ → ( 𝑎 ⊊ 𝑓 ↔ ℎ ⊊ 𝑓 ) ) |
241 |
|
xpeq1 |
⊢ ( 𝑎 = ℎ → ( 𝑎 × 𝑏 ) = ( ℎ × 𝑏 ) ) |
242 |
241
|
pweqd |
⊢ ( 𝑎 = ℎ → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( ℎ × 𝑏 ) ) |
243 |
|
pweq |
⊢ ( 𝑎 = ℎ → 𝒫 𝑎 = 𝒫 ℎ ) |
244 |
243
|
raleqdv |
⊢ ( 𝑎 = ℎ → ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑐 “ 𝑑 ) ) ) |
245 |
|
f1eq2 |
⊢ ( 𝑎 = ℎ → ( 𝑒 : 𝑎 –1-1→ V ↔ 𝑒 : ℎ –1-1→ V ) ) |
246 |
245
|
rexbidv |
⊢ ( 𝑎 = ℎ → ( ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ↔ ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ℎ –1-1→ V ) ) |
247 |
244 246
|
imbi12d |
⊢ ( 𝑎 = ℎ → ( ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ↔ ( ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ℎ –1-1→ V ) ) ) |
248 |
242 247
|
raleqbidv |
⊢ ( 𝑎 = ℎ → ( ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ↔ ∀ 𝑐 ∈ 𝒫 ( ℎ × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ℎ –1-1→ V ) ) ) |
249 |
240 248
|
imbi12d |
⊢ ( 𝑎 = ℎ → ( ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ↔ ( ℎ ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( ℎ × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ℎ –1-1→ V ) ) ) ) |
250 |
249
|
spvv |
⊢ ( ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) → ( ℎ ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( ℎ × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ℎ –1-1→ V ) ) ) |
251 |
239 219 250
|
sylc |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∀ 𝑐 ∈ 𝒫 ( ℎ × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ℎ –1-1→ V ) ) |
252 |
|
simplrl |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ) |
253 |
|
ssres |
⊢ ( 𝑔 ⊆ ( 𝑓 × 𝑏 ) → ( 𝑔 ↾ ℎ ) ⊆ ( ( 𝑓 × 𝑏 ) ↾ ℎ ) ) |
254 |
|
df-res |
⊢ ( ( 𝑓 × 𝑏 ) ↾ ℎ ) = ( ( 𝑓 × 𝑏 ) ∩ ( ℎ × V ) ) |
255 |
|
inxp |
⊢ ( ( 𝑓 × 𝑏 ) ∩ ( ℎ × V ) ) = ( ( 𝑓 ∩ ℎ ) × ( 𝑏 ∩ V ) ) |
256 |
|
inss2 |
⊢ ( 𝑓 ∩ ℎ ) ⊆ ℎ |
257 |
|
inss1 |
⊢ ( 𝑏 ∩ V ) ⊆ 𝑏 |
258 |
|
xpss12 |
⊢ ( ( ( 𝑓 ∩ ℎ ) ⊆ ℎ ∧ ( 𝑏 ∩ V ) ⊆ 𝑏 ) → ( ( 𝑓 ∩ ℎ ) × ( 𝑏 ∩ V ) ) ⊆ ( ℎ × 𝑏 ) ) |
259 |
256 257 258
|
mp2an |
⊢ ( ( 𝑓 ∩ ℎ ) × ( 𝑏 ∩ V ) ) ⊆ ( ℎ × 𝑏 ) |
260 |
255 259
|
eqsstri |
⊢ ( ( 𝑓 × 𝑏 ) ∩ ( ℎ × V ) ) ⊆ ( ℎ × 𝑏 ) |
261 |
254 260
|
eqsstri |
⊢ ( ( 𝑓 × 𝑏 ) ↾ ℎ ) ⊆ ( ℎ × 𝑏 ) |
262 |
253 261
|
sstrdi |
⊢ ( 𝑔 ⊆ ( 𝑓 × 𝑏 ) → ( 𝑔 ↾ ℎ ) ⊆ ( ℎ × 𝑏 ) ) |
263 |
94 262
|
syl |
⊢ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) → ( 𝑔 ↾ ℎ ) ⊆ ( ℎ × 𝑏 ) ) |
264 |
45
|
resex |
⊢ ( 𝑔 ↾ ℎ ) ∈ V |
265 |
264
|
elpw |
⊢ ( ( 𝑔 ↾ ℎ ) ∈ 𝒫 ( ℎ × 𝑏 ) ↔ ( 𝑔 ↾ ℎ ) ⊆ ( ℎ × 𝑏 ) ) |
266 |
263 265
|
sylibr |
⊢ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) → ( 𝑔 ↾ ℎ ) ∈ 𝒫 ( ℎ × 𝑏 ) ) |
267 |
252 266
|
syl |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( 𝑔 ↾ ℎ ) ∈ 𝒫 ( ℎ × 𝑏 ) ) |
268 |
238 251 267
|
rspcdva |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( ∀ 𝑑 ∈ 𝒫 ℎ 𝑑 ≼ ( ( 𝑔 ↾ ℎ ) “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ↾ ℎ ) 𝑒 : ℎ –1-1→ V ) ) |
269 |
232 268
|
mpd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ↾ ℎ ) 𝑒 : ℎ –1-1→ V ) |
270 |
|
f1eq1 |
⊢ ( 𝑒 = 𝑖 → ( 𝑒 : ℎ –1-1→ V ↔ 𝑖 : ℎ –1-1→ V ) ) |
271 |
270
|
cbvrexvw |
⊢ ( ∃ 𝑒 ∈ 𝒫 ( 𝑔 ↾ ℎ ) 𝑒 : ℎ –1-1→ V ↔ ∃ 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) 𝑖 : ℎ –1-1→ V ) |
272 |
269 271
|
sylib |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∃ 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) 𝑖 : ℎ –1-1→ V ) |
273 |
|
id |
⊢ ( 𝑑 = ( ℎ ∪ 𝑐 ) → 𝑑 = ( ℎ ∪ 𝑐 ) ) |
274 |
|
imaeq2 |
⊢ ( 𝑑 = ( ℎ ∪ 𝑐 ) → ( 𝑔 “ 𝑑 ) = ( 𝑔 “ ( ℎ ∪ 𝑐 ) ) ) |
275 |
273 274
|
breq12d |
⊢ ( 𝑑 = ( ℎ ∪ 𝑐 ) → ( 𝑑 ≼ ( 𝑔 “ 𝑑 ) ↔ ( ℎ ∪ 𝑐 ) ≼ ( 𝑔 “ ( ℎ ∪ 𝑐 ) ) ) ) |
276 |
|
simprr |
⊢ ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) → ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) |
277 |
276
|
ad2antrr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) |
278 |
220
|
ad2antrr |
⊢ ( ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) → ℎ ⊆ 𝑓 ) |
279 |
278
|
ad2antlr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ℎ ⊆ 𝑓 ) |
280 |
|
elpwi |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) → 𝑐 ⊆ ( 𝑓 ∖ ℎ ) ) |
281 |
|
difss |
⊢ ( 𝑓 ∖ ℎ ) ⊆ 𝑓 |
282 |
280 281
|
sstrdi |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) → 𝑐 ⊆ 𝑓 ) |
283 |
282
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → 𝑐 ⊆ 𝑓 ) |
284 |
279 283
|
unssd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ( ℎ ∪ 𝑐 ) ⊆ 𝑓 ) |
285 |
128
|
elpw2 |
⊢ ( ( ℎ ∪ 𝑐 ) ∈ 𝒫 𝑓 ↔ ( ℎ ∪ 𝑐 ) ⊆ 𝑓 ) |
286 |
284 285
|
sylibr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ( ℎ ∪ 𝑐 ) ∈ 𝒫 𝑓 ) |
287 |
275 277 286
|
rspcdva |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ( ℎ ∪ 𝑐 ) ≼ ( 𝑔 “ ( ℎ ∪ 𝑐 ) ) ) |
288 |
|
imaundi |
⊢ ( 𝑔 “ ( ℎ ∪ 𝑐 ) ) = ( ( 𝑔 “ ℎ ) ∪ ( 𝑔 “ 𝑐 ) ) |
289 |
|
undif2 |
⊢ ( ( 𝑔 “ ℎ ) ∪ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) = ( ( 𝑔 “ ℎ ) ∪ ( 𝑔 “ 𝑐 ) ) |
290 |
288 289
|
eqtr4i |
⊢ ( 𝑔 “ ( ℎ ∪ 𝑐 ) ) = ( ( 𝑔 “ ℎ ) ∪ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) |
291 |
287 290
|
breqtrdi |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ( ℎ ∪ 𝑐 ) ≼ ( ( 𝑔 “ ℎ ) ∪ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) ) |
292 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → 𝑓 ∈ Fin ) |
293 |
292 279
|
ssfid |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ℎ ∈ Fin ) |
294 |
|
id |
⊢ ( 𝑑 = ℎ → 𝑑 = ℎ ) |
295 |
|
imaeq2 |
⊢ ( 𝑑 = ℎ → ( 𝑔 “ 𝑑 ) = ( 𝑔 “ ℎ ) ) |
296 |
294 295
|
breq12d |
⊢ ( 𝑑 = ℎ → ( 𝑑 ≼ ( 𝑔 “ 𝑑 ) ↔ ℎ ≼ ( 𝑔 “ ℎ ) ) ) |
297 |
|
vex |
⊢ ℎ ∈ V |
298 |
297
|
elpw |
⊢ ( ℎ ∈ 𝒫 𝑓 ↔ ℎ ⊆ 𝑓 ) |
299 |
279 298
|
sylibr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ℎ ∈ 𝒫 𝑓 ) |
300 |
296 277 299
|
rspcdva |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ℎ ≼ ( 𝑔 “ ℎ ) ) |
301 |
|
simplrr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) |
302 |
|
bren2 |
⊢ ( ℎ ≈ ( 𝑔 “ ℎ ) ↔ ( ℎ ≼ ( 𝑔 “ ℎ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) |
303 |
300 301 302
|
sylanbrc |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ℎ ≈ ( 𝑔 “ ℎ ) ) |
304 |
303
|
ensymd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ( 𝑔 “ ℎ ) ≈ ℎ ) |
305 |
|
incom |
⊢ ( ℎ ∩ 𝑐 ) = ( 𝑐 ∩ ℎ ) |
306 |
|
ssdifin0 |
⊢ ( 𝑐 ⊆ ( 𝑓 ∖ ℎ ) → ( 𝑐 ∩ ℎ ) = ∅ ) |
307 |
305 306
|
eqtrid |
⊢ ( 𝑐 ⊆ ( 𝑓 ∖ ℎ ) → ( ℎ ∩ 𝑐 ) = ∅ ) |
308 |
280 307
|
syl |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) → ( ℎ ∩ 𝑐 ) = ∅ ) |
309 |
308
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ( ℎ ∩ 𝑐 ) = ∅ ) |
310 |
|
disjdif |
⊢ ( ( 𝑔 “ ℎ ) ∩ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) = ∅ |
311 |
310
|
a1i |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ( ( 𝑔 “ ℎ ) ∩ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) = ∅ ) |
312 |
|
domunfican |
⊢ ( ( ( ℎ ∈ Fin ∧ ( 𝑔 “ ℎ ) ≈ ℎ ) ∧ ( ( ℎ ∩ 𝑐 ) = ∅ ∧ ( ( 𝑔 “ ℎ ) ∩ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) = ∅ ) ) → ( ( ℎ ∪ 𝑐 ) ≼ ( ( 𝑔 “ ℎ ) ∪ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) ↔ 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) ) |
313 |
293 304 309 311 312
|
syl22anc |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ( ( ℎ ∪ 𝑐 ) ≼ ( ( 𝑔 “ ℎ ) ∪ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) ↔ 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) ) |
314 |
291 313
|
mpbid |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → 𝑐 ≼ ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) |
315 |
101
|
difeq1d |
⊢ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) → ( ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) ∖ ( 𝑔 “ ℎ ) ) = ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) |
316 |
315
|
ad2antrl |
⊢ ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) → ( ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) ∖ ( 𝑔 “ ℎ ) ) = ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) |
317 |
316
|
ad2antrr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ( ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) ∖ ( 𝑔 “ ℎ ) ) = ( ( 𝑔 “ 𝑐 ) ∖ ( 𝑔 “ ℎ ) ) ) |
318 |
314 317
|
breqtrrd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → 𝑐 ≼ ( ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) ∖ ( 𝑔 “ ℎ ) ) ) |
319 |
|
df-ss |
⊢ ( 𝑐 ⊆ ( 𝑓 ∖ ℎ ) ↔ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) = 𝑐 ) |
320 |
280 319
|
sylib |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) → ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) = 𝑐 ) |
321 |
320
|
imaeq2d |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) → ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) ) = ( 𝑔 “ 𝑐 ) ) |
322 |
321
|
ineq1d |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) → ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) = ( ( 𝑔 “ 𝑐 ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) |
323 |
|
indif2 |
⊢ ( ( 𝑔 “ 𝑐 ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) = ( ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) ∖ ( 𝑔 “ ℎ ) ) |
324 |
322 323
|
eqtrdi |
⊢ ( 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) → ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) = ( ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) ∖ ( 𝑔 “ ℎ ) ) ) |
325 |
324
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) = ( ( ( 𝑔 “ 𝑐 ) ∩ 𝑏 ) ∖ ( 𝑔 “ ℎ ) ) ) |
326 |
318 325
|
breqtrrd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) ) → 𝑐 ≼ ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) |
327 |
326
|
ralrimiva |
⊢ ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∀ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑐 ≼ ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) |
328 |
|
imainrect |
⊢ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑐 ) = ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) |
329 |
|
imaeq2 |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑐 ) = ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) ) |
330 |
328 329
|
eqtr3id |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) = ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) ) |
331 |
109 330
|
breq12d |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ≼ ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ↔ 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) ) ) |
332 |
331
|
cbvralvw |
⊢ ( ∀ 𝑐 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑐 ≼ ( ( 𝑔 “ ( 𝑐 ∩ ( 𝑓 ∖ ℎ ) ) ) ∩ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ↔ ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) ) |
333 |
327 332
|
sylib |
⊢ ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) ) |
334 |
333
|
adantllr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) ) |
335 |
|
inss2 |
⊢ ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ⊆ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) |
336 |
|
difss |
⊢ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ⊆ 𝑏 |
337 |
|
xpss2 |
⊢ ( ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ⊆ 𝑏 → ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ⊆ ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ) |
338 |
336 337
|
ax-mp |
⊢ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ⊆ ( ( 𝑓 ∖ ℎ ) × 𝑏 ) |
339 |
335 338
|
sstri |
⊢ ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ⊆ ( ( 𝑓 ∖ ℎ ) × 𝑏 ) |
340 |
45
|
inex1 |
⊢ ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∈ V |
341 |
340
|
elpw |
⊢ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∈ 𝒫 ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ↔ ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ⊆ ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ) |
342 |
339 341
|
mpbir |
⊢ ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∈ 𝒫 ( ( 𝑓 ∖ ℎ ) × 𝑏 ) |
343 |
|
incom |
⊢ ( 𝑓 ∩ ℎ ) = ( ℎ ∩ 𝑓 ) |
344 |
|
df-ss |
⊢ ( ℎ ⊆ 𝑓 ↔ ( ℎ ∩ 𝑓 ) = ℎ ) |
345 |
220 344
|
sylib |
⊢ ( ℎ ⊊ 𝑓 → ( ℎ ∩ 𝑓 ) = ℎ ) |
346 |
343 345
|
eqtrid |
⊢ ( ℎ ⊊ 𝑓 → ( 𝑓 ∩ ℎ ) = ℎ ) |
347 |
346
|
neeq1d |
⊢ ( ℎ ⊊ 𝑓 → ( ( 𝑓 ∩ ℎ ) ≠ ∅ ↔ ℎ ≠ ∅ ) ) |
348 |
347
|
biimpar |
⊢ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ( 𝑓 ∩ ℎ ) ≠ ∅ ) |
349 |
|
disj4 |
⊢ ( ( 𝑓 ∩ ℎ ) = ∅ ↔ ¬ ( 𝑓 ∖ ℎ ) ⊊ 𝑓 ) |
350 |
349
|
bicomi |
⊢ ( ¬ ( 𝑓 ∖ ℎ ) ⊊ 𝑓 ↔ ( 𝑓 ∩ ℎ ) = ∅ ) |
351 |
350
|
necon1abii |
⊢ ( ( 𝑓 ∩ ℎ ) ≠ ∅ ↔ ( 𝑓 ∖ ℎ ) ⊊ 𝑓 ) |
352 |
348 351
|
sylib |
⊢ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ( 𝑓 ∖ ℎ ) ⊊ 𝑓 ) |
353 |
352
|
ad2antrl |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( 𝑓 ∖ ℎ ) ⊊ 𝑓 ) |
354 |
128
|
difexi |
⊢ ( 𝑓 ∖ ℎ ) ∈ V |
355 |
|
psseq1 |
⊢ ( 𝑎 = ( 𝑓 ∖ ℎ ) → ( 𝑎 ⊊ 𝑓 ↔ ( 𝑓 ∖ ℎ ) ⊊ 𝑓 ) ) |
356 |
|
xpeq1 |
⊢ ( 𝑎 = ( 𝑓 ∖ ℎ ) → ( 𝑎 × 𝑏 ) = ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ) |
357 |
356
|
pweqd |
⊢ ( 𝑎 = ( 𝑓 ∖ ℎ ) → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ) |
358 |
|
pweq |
⊢ ( 𝑎 = ( 𝑓 ∖ ℎ ) → 𝒫 𝑎 = 𝒫 ( 𝑓 ∖ ℎ ) ) |
359 |
358
|
raleqdv |
⊢ ( 𝑎 = ( 𝑓 ∖ ℎ ) → ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) ) ) |
360 |
|
f1eq2 |
⊢ ( 𝑎 = ( 𝑓 ∖ ℎ ) → ( 𝑒 : 𝑎 –1-1→ V ↔ 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) |
361 |
360
|
rexbidv |
⊢ ( 𝑎 = ( 𝑓 ∖ ℎ ) → ( ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ↔ ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) |
362 |
359 361
|
imbi12d |
⊢ ( 𝑎 = ( 𝑓 ∖ ℎ ) → ( ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ↔ ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) ) |
363 |
357 362
|
raleqbidv |
⊢ ( 𝑎 = ( 𝑓 ∖ ℎ ) → ( ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ↔ ∀ 𝑐 ∈ 𝒫 ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) ) |
364 |
355 363
|
imbi12d |
⊢ ( 𝑎 = ( 𝑓 ∖ ℎ ) → ( ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ↔ ( ( 𝑓 ∖ ℎ ) ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) ) ) |
365 |
354 364
|
spcv |
⊢ ( ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) → ( ( 𝑓 ∖ ℎ ) ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) ) |
366 |
239 353 365
|
sylc |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∀ 𝑐 ∈ 𝒫 ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) |
367 |
|
imaeq1 |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → ( 𝑐 “ 𝑑 ) = ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) ) |
368 |
367
|
breq2d |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → ( 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) ) ) |
369 |
368
|
ralbidv |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) ) ) |
370 |
|
pweq |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → 𝒫 𝑐 = 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ) |
371 |
370
|
rexeqdv |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → ( ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ↔ ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) |
372 |
369 371
|
imbi12d |
⊢ ( 𝑐 = ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → ( ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ↔ ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) ) |
373 |
372
|
rspcva |
⊢ ( ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∈ 𝒫 ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ∧ ∀ 𝑐 ∈ 𝒫 ( ( 𝑓 ∖ ℎ ) × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) |
374 |
342 366 373
|
sylancr |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( ∀ 𝑑 ∈ 𝒫 ( 𝑓 ∖ ℎ ) 𝑑 ≼ ( ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) |
375 |
334 374
|
mpd |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ) |
376 |
|
f1eq1 |
⊢ ( 𝑒 = 𝑗 → ( 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ↔ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) |
377 |
376
|
cbvrexvw |
⊢ ( ∃ 𝑒 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑒 : ( 𝑓 ∖ ℎ ) –1-1→ V ↔ ∃ 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) |
378 |
375 377
|
sylib |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∃ 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) |
379 |
|
elpwi |
⊢ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) → 𝑖 ⊆ ( 𝑔 ↾ ℎ ) ) |
380 |
|
resss |
⊢ ( 𝑔 ↾ ℎ ) ⊆ 𝑔 |
381 |
379 380
|
sstrdi |
⊢ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) → 𝑖 ⊆ 𝑔 ) |
382 |
381
|
adantr |
⊢ ( ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) → 𝑖 ⊆ 𝑔 ) |
383 |
382
|
ad2antlr |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → 𝑖 ⊆ 𝑔 ) |
384 |
|
elpwi |
⊢ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → 𝑗 ⊆ ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ) |
385 |
|
inss1 |
⊢ ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ⊆ 𝑔 |
386 |
384 385
|
sstrdi |
⊢ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → 𝑗 ⊆ 𝑔 ) |
387 |
386
|
ad2antrl |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → 𝑗 ⊆ 𝑔 ) |
388 |
383 387
|
unssd |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( 𝑖 ∪ 𝑗 ) ⊆ 𝑔 ) |
389 |
45
|
elpw2 |
⊢ ( ( 𝑖 ∪ 𝑗 ) ∈ 𝒫 𝑔 ↔ ( 𝑖 ∪ 𝑗 ) ⊆ 𝑔 ) |
390 |
388 389
|
sylibr |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( 𝑖 ∪ 𝑗 ) ∈ 𝒫 𝑔 ) |
391 |
|
f1f1orn |
⊢ ( 𝑖 : ℎ –1-1→ V → 𝑖 : ℎ –1-1-onto→ ran 𝑖 ) |
392 |
391
|
adantl |
⊢ ( ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) → 𝑖 : ℎ –1-1-onto→ ran 𝑖 ) |
393 |
392
|
ad2antlr |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → 𝑖 : ℎ –1-1-onto→ ran 𝑖 ) |
394 |
|
f1f1orn |
⊢ ( 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V → 𝑗 : ( 𝑓 ∖ ℎ ) –1-1-onto→ ran 𝑗 ) |
395 |
394
|
ad2antll |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → 𝑗 : ( 𝑓 ∖ ℎ ) –1-1-onto→ ran 𝑗 ) |
396 |
|
disjdif |
⊢ ( ℎ ∩ ( 𝑓 ∖ ℎ ) ) = ∅ |
397 |
396
|
a1i |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( ℎ ∩ ( 𝑓 ∖ ℎ ) ) = ∅ ) |
398 |
|
rnss |
⊢ ( 𝑖 ⊆ ( 𝑔 ↾ ℎ ) → ran 𝑖 ⊆ ran ( 𝑔 ↾ ℎ ) ) |
399 |
379 398
|
syl |
⊢ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) → ran 𝑖 ⊆ ran ( 𝑔 ↾ ℎ ) ) |
400 |
|
df-ima |
⊢ ( 𝑔 “ ℎ ) = ran ( 𝑔 ↾ ℎ ) |
401 |
399 400
|
sseqtrrdi |
⊢ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) → ran 𝑖 ⊆ ( 𝑔 “ ℎ ) ) |
402 |
401
|
adantr |
⊢ ( ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) → ran 𝑖 ⊆ ( 𝑔 “ ℎ ) ) |
403 |
402
|
ad2antlr |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ran 𝑖 ⊆ ( 𝑔 “ ℎ ) ) |
404 |
|
incom |
⊢ ( ( 𝑔 “ ℎ ) ∩ ran 𝑗 ) = ( ran 𝑗 ∩ ( 𝑔 “ ℎ ) ) |
405 |
384 335
|
sstrdi |
⊢ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → 𝑗 ⊆ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) |
406 |
|
rnss |
⊢ ( 𝑗 ⊆ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) → ran 𝑗 ⊆ ran ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) |
407 |
405 406
|
syl |
⊢ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → ran 𝑗 ⊆ ran ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) |
408 |
|
rnxpss |
⊢ ran ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ⊆ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) |
409 |
407 408
|
sstrdi |
⊢ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) → ran 𝑗 ⊆ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) |
410 |
409
|
ad2antrl |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ran 𝑗 ⊆ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) |
411 |
|
disjdifr |
⊢ ( ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ∩ ( 𝑔 “ ℎ ) ) = ∅ |
412 |
|
ssdisj |
⊢ ( ( ran 𝑗 ⊆ ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ∧ ( ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ∩ ( 𝑔 “ ℎ ) ) = ∅ ) → ( ran 𝑗 ∩ ( 𝑔 “ ℎ ) ) = ∅ ) |
413 |
410 411 412
|
sylancl |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( ran 𝑗 ∩ ( 𝑔 “ ℎ ) ) = ∅ ) |
414 |
404 413
|
eqtrid |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( ( 𝑔 “ ℎ ) ∩ ran 𝑗 ) = ∅ ) |
415 |
|
ssdisj |
⊢ ( ( ran 𝑖 ⊆ ( 𝑔 “ ℎ ) ∧ ( ( 𝑔 “ ℎ ) ∩ ran 𝑗 ) = ∅ ) → ( ran 𝑖 ∩ ran 𝑗 ) = ∅ ) |
416 |
403 414 415
|
syl2anc |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( ran 𝑖 ∩ ran 𝑗 ) = ∅ ) |
417 |
|
f1oun |
⊢ ( ( ( 𝑖 : ℎ –1-1-onto→ ran 𝑖 ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1-onto→ ran 𝑗 ) ∧ ( ( ℎ ∩ ( 𝑓 ∖ ℎ ) ) = ∅ ∧ ( ran 𝑖 ∩ ran 𝑗 ) = ∅ ) ) → ( 𝑖 ∪ 𝑗 ) : ( ℎ ∪ ( 𝑓 ∖ ℎ ) ) –1-1-onto→ ( ran 𝑖 ∪ ran 𝑗 ) ) |
418 |
393 395 397 416 417
|
syl22anc |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( 𝑖 ∪ 𝑗 ) : ( ℎ ∪ ( 𝑓 ∖ ℎ ) ) –1-1-onto→ ( ran 𝑖 ∪ ran 𝑗 ) ) |
419 |
|
undif |
⊢ ( ℎ ⊆ 𝑓 ↔ ( ℎ ∪ ( 𝑓 ∖ ℎ ) ) = 𝑓 ) |
420 |
419
|
biimpi |
⊢ ( ℎ ⊆ 𝑓 → ( ℎ ∪ ( 𝑓 ∖ ℎ ) ) = 𝑓 ) |
421 |
420
|
adantl |
⊢ ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) → ( ℎ ∪ ( 𝑓 ∖ ℎ ) ) = 𝑓 ) |
422 |
421
|
ad2antrr |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( ℎ ∪ ( 𝑓 ∖ ℎ ) ) = 𝑓 ) |
423 |
422
|
f1oeq2d |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( ( 𝑖 ∪ 𝑗 ) : ( ℎ ∪ ( 𝑓 ∖ ℎ ) ) –1-1-onto→ ( ran 𝑖 ∪ ran 𝑗 ) ↔ ( 𝑖 ∪ 𝑗 ) : 𝑓 –1-1-onto→ ( ran 𝑖 ∪ ran 𝑗 ) ) ) |
424 |
418 423
|
mpbid |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( 𝑖 ∪ 𝑗 ) : 𝑓 –1-1-onto→ ( ran 𝑖 ∪ ran 𝑗 ) ) |
425 |
|
f1of1 |
⊢ ( ( 𝑖 ∪ 𝑗 ) : 𝑓 –1-1-onto→ ( ran 𝑖 ∪ ran 𝑗 ) → ( 𝑖 ∪ 𝑗 ) : 𝑓 –1-1→ ( ran 𝑖 ∪ ran 𝑗 ) ) |
426 |
424 425
|
syl |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( 𝑖 ∪ 𝑗 ) : 𝑓 –1-1→ ( ran 𝑖 ∪ ran 𝑗 ) ) |
427 |
|
ssv |
⊢ ( ran 𝑖 ∪ ran 𝑗 ) ⊆ V |
428 |
|
f1ss |
⊢ ( ( ( 𝑖 ∪ 𝑗 ) : 𝑓 –1-1→ ( ran 𝑖 ∪ ran 𝑗 ) ∧ ( ran 𝑖 ∪ ran 𝑗 ) ⊆ V ) → ( 𝑖 ∪ 𝑗 ) : 𝑓 –1-1→ V ) |
429 |
426 427 428
|
sylancl |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ( 𝑖 ∪ 𝑗 ) : 𝑓 –1-1→ V ) |
430 |
|
f1eq1 |
⊢ ( 𝑒 = ( 𝑖 ∪ 𝑗 ) → ( 𝑒 : 𝑓 –1-1→ V ↔ ( 𝑖 ∪ 𝑗 ) : 𝑓 –1-1→ V ) ) |
431 |
430
|
rspcev |
⊢ ( ( ( 𝑖 ∪ 𝑗 ) ∈ 𝒫 𝑔 ∧ ( 𝑖 ∪ 𝑗 ) : 𝑓 –1-1→ V ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
432 |
390 429 431
|
syl2anc |
⊢ ( ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) ∧ ( 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) ∧ 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
433 |
432
|
rexlimdvaa |
⊢ ( ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) ∧ ( 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) ∧ 𝑖 : ℎ –1-1→ V ) ) → ( ∃ 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
434 |
433
|
rexlimdvaa |
⊢ ( ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ℎ ⊆ 𝑓 ) → ( ∃ 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) 𝑖 : ℎ –1-1→ V → ( ∃ 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) ) |
435 |
252 221 434
|
syl2anc |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ( ∃ 𝑖 ∈ 𝒫 ( 𝑔 ↾ ℎ ) 𝑖 : ℎ –1-1→ V → ( ∃ 𝑗 ∈ 𝒫 ( 𝑔 ∩ ( ( 𝑓 ∖ ℎ ) × ( 𝑏 ∖ ( 𝑔 “ ℎ ) ) ) ) 𝑗 : ( 𝑓 ∖ ℎ ) –1-1→ V → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) ) |
436 |
272 378 435
|
mp2d |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
437 |
436
|
ex |
⊢ ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) → ( ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
438 |
437
|
exlimdv |
⊢ ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) → ( ∃ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
439 |
438
|
imp |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ∃ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) ∧ ¬ ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
440 |
218 439
|
sylan2br |
⊢ ( ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) ∧ ¬ ∀ ℎ ( ( ℎ ⊊ 𝑓 ∧ ℎ ≠ ∅ ) → ℎ ≺ ( 𝑔 “ ℎ ) ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
441 |
217 440
|
pm2.61dan |
⊢ ( ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) ∧ ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ∧ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ) ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) |
442 |
441
|
exp32 |
⊢ ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) → ( 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) → ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) ) |
443 |
442
|
ralrimiv |
⊢ ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) → ∀ 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ) |
444 |
|
imaeq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 “ 𝑑 ) = ( 𝑐 “ 𝑑 ) ) |
445 |
444
|
breq2d |
⊢ ( 𝑔 = 𝑐 → ( 𝑑 ≼ ( 𝑔 “ 𝑑 ) ↔ 𝑑 ≼ ( 𝑐 “ 𝑑 ) ) ) |
446 |
445
|
ralbidv |
⊢ ( 𝑔 = 𝑐 → ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) ↔ ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) ) ) |
447 |
|
pweq |
⊢ ( 𝑔 = 𝑐 → 𝒫 𝑔 = 𝒫 𝑐 ) |
448 |
447
|
rexeqdv |
⊢ ( 𝑔 = 𝑐 → ( ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ↔ ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) |
449 |
446 448
|
imbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ↔ ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) |
450 |
449
|
cbvralvw |
⊢ ( ∀ 𝑔 ∈ 𝒫 ( 𝑓 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑔 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑔 𝑒 : 𝑓 –1-1→ V ) ↔ ∀ 𝑐 ∈ 𝒫 ( 𝑓 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) |
451 |
443 450
|
sylib |
⊢ ( ( ( 𝑓 ∈ Fin ∧ 𝑏 ∈ Fin ) ∧ ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) → ∀ 𝑐 ∈ 𝒫 ( 𝑓 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) |
452 |
451
|
exp31 |
⊢ ( 𝑓 ∈ Fin → ( 𝑏 ∈ Fin → ( ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) → ∀ 𝑐 ∈ 𝒫 ( 𝑓 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) ) |
453 |
452
|
a2d |
⊢ ( 𝑓 ∈ Fin → ( ( 𝑏 ∈ Fin → ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) → ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝑓 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) ) |
454 |
22 453
|
syl5bi |
⊢ ( 𝑓 ∈ Fin → ( ∀ 𝑎 ( 𝑎 ⊊ 𝑓 → ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝑎 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑎 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑎 –1-1→ V ) ) ) → ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝑓 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝑓 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝑓 –1-1→ V ) ) ) ) |
455 |
9 18 454
|
findcard3 |
⊢ ( 𝐴 ∈ Fin → ( 𝑏 ∈ Fin → ∀ 𝑐 ∈ 𝒫 ( 𝐴 × 𝑏 ) ( ∀ 𝑑 ∈ 𝒫 𝐴 𝑑 ≼ ( 𝑐 “ 𝑑 ) → ∃ 𝑒 ∈ 𝒫 𝑐 𝑒 : 𝐴 –1-1→ V ) ) ) |