Step |
Hyp |
Ref |
Expression |
1 |
|
marypha2.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
marypha2.b |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Fin ) |
3 |
|
marypha2.c |
⊢ ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → 𝑑 ≼ ∪ ( 𝐹 “ 𝑑 ) ) |
4 |
2 1
|
unirnffid |
⊢ ( 𝜑 → ∪ ran 𝐹 ∈ Fin ) |
5 |
|
eqid |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) |
6 |
5
|
marypha2lem1 |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝐴 × ∪ ran 𝐹 ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝐴 × ∪ ran 𝐹 ) ) |
8 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
9 |
5
|
marypha2lem4 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑑 ⊆ 𝐴 ) → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) “ 𝑑 ) = ∪ ( 𝐹 “ 𝑑 ) ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) “ 𝑑 ) = ∪ ( 𝐹 “ 𝑑 ) ) |
11 |
3 10
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → 𝑑 ≼ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) “ 𝑑 ) ) |
12 |
1 4 7 11
|
marypha1 |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) |
13 |
|
df-rex |
⊢ ( ∃ 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) |
14 |
|
ssv |
⊢ ∪ ran 𝐹 ⊆ V |
15 |
|
f1ss |
⊢ ( ( 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ⊆ V ) → 𝑔 : 𝐴 –1-1→ V ) |
16 |
14 15
|
mpan2 |
⊢ ( 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 → 𝑔 : 𝐴 –1-1→ V ) |
17 |
16
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → 𝑔 : 𝐴 –1-1→ V ) |
18 |
|
elpwi |
⊢ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) → 𝑔 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ) |
19 |
18
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → 𝑔 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ) |
20 |
|
f1fn |
⊢ ( 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 → 𝑔 Fn 𝐴 ) |
21 |
20
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → 𝑔 Fn 𝐴 ) |
22 |
5
|
marypha2lem3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑔 Fn 𝐴 ) → ( 𝑔 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
23 |
8 21 22
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → ( 𝑔 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
24 |
19 23
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
25 |
17 24
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → ( 𝑔 : 𝐴 –1-1→ V ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
26 |
25
|
ex |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) → ( 𝑔 : 𝐴 –1-1→ V ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
27 |
26
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) → ∃ 𝑔 ( 𝑔 : 𝐴 –1-1→ V ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
28 |
13 27
|
syl5bi |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 → ∃ 𝑔 ( 𝑔 : 𝐴 –1-1→ V ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
29 |
12 28
|
mpd |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : 𝐴 –1-1→ V ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |