Metamath Proof Explorer


Theorem marypha2lem1

Description: Lemma for marypha2 . Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypothesis marypha2lem.t 𝑇 = 𝑥𝐴 ( { 𝑥 } × ( 𝐹𝑥 ) )
Assertion marypha2lem1 𝑇 ⊆ ( 𝐴 × ran 𝐹 )

Proof

Step Hyp Ref Expression
1 marypha2lem.t 𝑇 = 𝑥𝐴 ( { 𝑥 } × ( 𝐹𝑥 ) )
2 iunss ( 𝑥𝐴 ( { 𝑥 } × ( 𝐹𝑥 ) ) ⊆ ( 𝐴 × ran 𝐹 ) ↔ ∀ 𝑥𝐴 ( { 𝑥 } × ( 𝐹𝑥 ) ) ⊆ ( 𝐴 × ran 𝐹 ) )
3 snssi ( 𝑥𝐴 → { 𝑥 } ⊆ 𝐴 )
4 fvssunirn ( 𝐹𝑥 ) ⊆ ran 𝐹
5 xpss12 ( ( { 𝑥 } ⊆ 𝐴 ∧ ( 𝐹𝑥 ) ⊆ ran 𝐹 ) → ( { 𝑥 } × ( 𝐹𝑥 ) ) ⊆ ( 𝐴 × ran 𝐹 ) )
6 3 4 5 sylancl ( 𝑥𝐴 → ( { 𝑥 } × ( 𝐹𝑥 ) ) ⊆ ( 𝐴 × ran 𝐹 ) )
7 2 6 mprgbir 𝑥𝐴 ( { 𝑥 } × ( 𝐹𝑥 ) ) ⊆ ( 𝐴 × ran 𝐹 )
8 1 7 eqsstri 𝑇 ⊆ ( 𝐴 × ran 𝐹 )