Step |
Hyp |
Ref |
Expression |
1 |
|
marypha2lem.t |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) |
2 |
|
sneq |
⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
4 |
2 3
|
xpeq12d |
⊢ ( 𝑥 = 𝑧 → ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) = ( { 𝑧 } × ( 𝐹 ‘ 𝑧 ) ) ) |
5 |
4
|
cbviunv |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) = ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ( 𝐹 ‘ 𝑧 ) ) |
6 |
|
df-xp |
⊢ ( { 𝑧 } × ( 𝐹 ‘ 𝑧 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) } |
7 |
6
|
a1i |
⊢ ( 𝑧 ∈ 𝐴 → ( { 𝑧 } × ( 𝐹 ‘ 𝑧 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) } ) |
8 |
7
|
iuneq2i |
⊢ ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ( 𝐹 ‘ 𝑧 ) ) = ∪ 𝑧 ∈ 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) } |
9 |
|
iunopab |
⊢ ∪ 𝑧 ∈ 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) } |
10 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑧 } ↔ 𝑥 = 𝑧 ) |
11 |
|
equcom |
⊢ ( 𝑥 = 𝑧 ↔ 𝑧 = 𝑥 ) |
12 |
10 11
|
bitri |
⊢ ( 𝑥 ∈ { 𝑧 } ↔ 𝑧 = 𝑥 ) |
13 |
12
|
anbi1i |
⊢ ( ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝑧 = 𝑥 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) ) |
14 |
13
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐴 ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑧 = 𝑥 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
16 |
15
|
eleq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
16
|
ceqsrexbv |
⊢ ( ∃ 𝑧 ∈ 𝐴 ( 𝑧 = 𝑥 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
18 |
14 17
|
bitri |
⊢ ( ∃ 𝑧 ∈ 𝐴 ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
19 |
18
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑥 ∈ { 𝑧 } ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
20 |
8 9 19
|
3eqtri |
⊢ ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ( 𝐹 ‘ 𝑧 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
21 |
1 5 20
|
3eqtri |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |