Description: The matrix ring has the same zero as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matbas.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matbas.g | ⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | ||
| Assertion | mat0 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | matbas.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matbas.g | ⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
| 3 | eqidd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 4 | 1 2 | matbas | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐴 ) ) | 
| 5 | 1 2 | matplusg | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐴 ) ) | 
| 6 | 5 | oveqdr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) | 
| 7 | 3 4 6 | grpidpropd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐴 ) ) |