Step |
Hyp |
Ref |
Expression |
1 |
|
0xp |
⊢ ( ∅ × ∅ ) = ∅ |
2 |
1
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → ( ∅ × ∅ ) = ∅ ) |
3 |
2
|
oveq2d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = ( ( Base ‘ 𝑅 ) ↑m ∅ ) ) |
4 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
5 |
|
map0e |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
6 |
4 5
|
mp1i |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
7 |
3 6
|
eqtrd |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = 1o ) |
8 |
|
0fin |
⊢ ∅ ∈ Fin |
9 |
|
eqid |
⊢ ( ∅ Mat 𝑅 ) = ( ∅ Mat 𝑅 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
9 10
|
matbas2 |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
12 |
8 11
|
mpan |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
13 |
|
df1o2 |
⊢ 1o = { ∅ } |
14 |
13
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → 1o = { ∅ } ) |
15 |
7 12 14
|
3eqtr3d |
⊢ ( 𝑅 ∈ 𝑉 → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |