Step |
Hyp |
Ref |
Expression |
1 |
|
mat0dim.a |
⊢ 𝐴 = ( ∅ Mat 𝑅 ) |
2 |
|
0fin |
⊢ ∅ ∈ Fin |
3 |
1
|
matring |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
4 |
2 3
|
mpan |
⊢ ( 𝑅 ∈ Ring → 𝐴 ∈ Ring ) |
5 |
|
mat0dimbas0 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
6 |
1
|
eqcomi |
⊢ ( ∅ Mat 𝑅 ) = 𝐴 |
7 |
6
|
fveq2i |
⊢ ( Base ‘ ( ∅ Mat 𝑅 ) ) = ( Base ‘ 𝐴 ) |
8 |
7
|
eqeq1i |
⊢ ( ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ↔ ( Base ‘ 𝐴 ) = { ∅ } ) |
9 |
|
eqidd |
⊢ ( ( ( Base ‘ 𝐴 ) = { ∅ } ∧ 𝑅 ∈ Ring ) → ( ∅ ( .r ‘ 𝐴 ) ∅ ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) |
10 |
|
0ex |
⊢ ∅ ∈ V |
11 |
|
oveq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) |
13 |
11 12
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ∀ 𝑦 ∈ { ∅ } ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) ) |
15 |
10 14
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ∀ 𝑦 ∈ { ∅ } ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) |
16 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) |
17 |
|
oveq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑦 = ∅ → ( ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ↔ ( ∅ ( .r ‘ 𝐴 ) ∅ ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) ) |
19 |
10 18
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { ∅ } ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ↔ ( ∅ ( .r ‘ 𝐴 ) ∅ ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) |
20 |
15 19
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ( ∅ ( .r ‘ 𝐴 ) ∅ ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) |
21 |
9 20
|
sylibr |
⊢ ( ( ( Base ‘ 𝐴 ) = { ∅ } ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) |
22 |
|
raleq |
⊢ ( ( Base ‘ 𝐴 ) = { ∅ } → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
23 |
22
|
raleqbi1dv |
⊢ ( ( Base ‘ 𝐴 ) = { ∅ } → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( ( Base ‘ 𝐴 ) = { ∅ } ∧ 𝑅 ∈ Ring ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
25 |
21 24
|
mpbird |
⊢ ( ( ( Base ‘ 𝐴 ) = { ∅ } ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) |
26 |
25
|
ex |
⊢ ( ( Base ‘ 𝐴 ) = { ∅ } → ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
27 |
8 26
|
sylbi |
⊢ ( ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } → ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
28 |
5 27
|
mpcom |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
30 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
31 |
29 30
|
iscrng2 |
⊢ ( 𝐴 ∈ CRing ↔ ( 𝐴 ∈ Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
32 |
4 28 31
|
sylanbrc |
⊢ ( 𝑅 ∈ Ring → 𝐴 ∈ CRing ) |