| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat0dim.a |
⊢ 𝐴 = ( ∅ Mat 𝑅 ) |
| 2 |
|
0fi |
⊢ ∅ ∈ Fin |
| 3 |
1
|
matring |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 4 |
2 3
|
mpan |
⊢ ( 𝑅 ∈ Ring → 𝐴 ∈ Ring ) |
| 5 |
|
mat0dimbas0 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
| 6 |
1
|
eqcomi |
⊢ ( ∅ Mat 𝑅 ) = 𝐴 |
| 7 |
6
|
fveq2i |
⊢ ( Base ‘ ( ∅ Mat 𝑅 ) ) = ( Base ‘ 𝐴 ) |
| 8 |
7
|
eqeq1i |
⊢ ( ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ↔ ( Base ‘ 𝐴 ) = { ∅ } ) |
| 9 |
|
eqidd |
⊢ ( ( ( Base ‘ 𝐴 ) = { ∅ } ∧ 𝑅 ∈ Ring ) → ( ∅ ( .r ‘ 𝐴 ) ∅ ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) |
| 10 |
|
0ex |
⊢ ∅ ∈ V |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) |
| 13 |
11 12
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) ) |
| 14 |
13
|
ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ∀ 𝑦 ∈ { ∅ } ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) ) |
| 15 |
10 14
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ∀ 𝑦 ∈ { ∅ } ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) |
| 18 |
16 17
|
eqeq12d |
⊢ ( 𝑦 = ∅ → ( ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ↔ ( ∅ ( .r ‘ 𝐴 ) ∅ ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) ) |
| 19 |
10 18
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { ∅ } ( ∅ ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) ∅ ) ↔ ( ∅ ( .r ‘ 𝐴 ) ∅ ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) |
| 20 |
15 19
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ( ∅ ( .r ‘ 𝐴 ) ∅ ) = ( ∅ ( .r ‘ 𝐴 ) ∅ ) ) |
| 21 |
9 20
|
sylibr |
⊢ ( ( ( Base ‘ 𝐴 ) = { ∅ } ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) |
| 22 |
|
raleq |
⊢ ( ( Base ‘ 𝐴 ) = { ∅ } → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
| 23 |
22
|
raleqbi1dv |
⊢ ( ( Base ‘ 𝐴 ) = { ∅ } → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( Base ‘ 𝐴 ) = { ∅ } ∧ 𝑅 ∈ Ring ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ↔ ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ { ∅ } ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
| 25 |
21 24
|
mpbird |
⊢ ( ( ( Base ‘ 𝐴 ) = { ∅ } ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) |
| 26 |
25
|
ex |
⊢ ( ( Base ‘ 𝐴 ) = { ∅ } → ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
| 27 |
8 26
|
sylbi |
⊢ ( ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } → ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
| 28 |
5 27
|
mpcom |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 30 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 31 |
29 30
|
iscrng2 |
⊢ ( 𝐴 ∈ CRing ↔ ( 𝐴 ∈ Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝐴 ) 𝑥 ) ) ) |
| 32 |
4 28 31
|
sylanbrc |
⊢ ( 𝑅 ∈ Ring → 𝐴 ∈ CRing ) |