Metamath Proof Explorer


Theorem mat0dimid

Description: The identity of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypothesis mat0dim.a 𝐴 = ( ∅ Mat 𝑅 )
Assertion mat0dimid ( 𝑅 ∈ Ring → ( 1r𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 mat0dim.a 𝐴 = ( ∅ Mat 𝑅 )
2 0fin ∅ ∈ Fin
3 1 matring ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
4 2 3 mpan ( 𝑅 ∈ Ring → 𝐴 ∈ Ring )
5 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
6 eqid ( 1r𝐴 ) = ( 1r𝐴 )
7 5 6 ringidcl ( 𝐴 ∈ Ring → ( 1r𝐴 ) ∈ ( Base ‘ 𝐴 ) )
8 4 7 syl ( 𝑅 ∈ Ring → ( 1r𝐴 ) ∈ ( Base ‘ 𝐴 ) )
9 1 fveq2i ( Base ‘ 𝐴 ) = ( Base ‘ ( ∅ Mat 𝑅 ) )
10 mat0dimbas0 ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } )
11 9 10 syl5eq ( 𝑅 ∈ Ring → ( Base ‘ 𝐴 ) = { ∅ } )
12 11 eleq2d ( 𝑅 ∈ Ring → ( ( 1r𝐴 ) ∈ ( Base ‘ 𝐴 ) ↔ ( 1r𝐴 ) ∈ { ∅ } ) )
13 elsni ( ( 1r𝐴 ) ∈ { ∅ } → ( 1r𝐴 ) = ∅ )
14 12 13 syl6bi ( 𝑅 ∈ Ring → ( ( 1r𝐴 ) ∈ ( Base ‘ 𝐴 ) → ( 1r𝐴 ) = ∅ ) )
15 8 14 mpd ( 𝑅 ∈ Ring → ( 1r𝐴 ) = ∅ )