Step |
Hyp |
Ref |
Expression |
1 |
|
mat0dim.a |
⊢ 𝐴 = ( ∅ Mat 𝑅 ) |
2 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
3 |
|
0fin |
⊢ ∅ ∈ Fin |
4 |
1
|
matlmod |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ LMod ) |
5 |
3 2 4
|
sylancr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → 𝐴 ∈ LMod ) |
6 |
1
|
matsca2 |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
7 |
3 6
|
mpan |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
9 |
8
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝑋 ∈ ( Base ‘ 𝑅 ) ↔ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
11 |
|
0ex |
⊢ ∅ ∈ V |
12 |
11
|
snid |
⊢ ∅ ∈ { ∅ } |
13 |
1
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) |
14 |
|
mat0dimbas0 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
15 |
13 14
|
syl5eq |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝐴 ) = { ∅ } ) |
16 |
12 15
|
eleqtrrid |
⊢ ( 𝑅 ∈ Ring → ∅ ∈ ( Base ‘ 𝐴 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ∅ ∈ ( Base ‘ 𝐴 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
19 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
20 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
21 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
22 |
18 19 20 21
|
lmodvscl |
⊢ ( ( 𝐴 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ∅ ∈ ( Base ‘ 𝐴 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) ) |
23 |
5 10 17 22
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) ) |
24 |
15
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) ↔ ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ { ∅ } ) ) |
25 |
|
elsni |
⊢ ( ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ { ∅ } → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) = ∅ ) |
26 |
24 25
|
syl6bi |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) = ∅ ) ) |
27 |
2 23 26
|
sylc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) = ∅ ) |