Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
1
|
snid |
⊢ ∅ ∈ { ∅ } |
3 |
|
mat0dimbas0 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
4 |
2 3
|
eleqtrrid |
⊢ ( 𝑅 ∈ Ring → ∅ ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
7 |
5 6
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑐 = ( 1r ‘ 𝑅 ) → ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) = ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑐 = ( 1r ‘ 𝑅 ) → ( ∅ = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) ↔ ∅ = ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 = ( 1r ‘ 𝑅 ) ) → ( ∅ = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) ↔ ∅ = ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) ) ) |
11 |
|
eqid |
⊢ ( ∅ Mat 𝑅 ) = ( ∅ Mat 𝑅 ) |
12 |
11
|
mat0dimscm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) = ∅ ) |
13 |
7 12
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) = ∅ ) |
14 |
13
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ∅ = ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) ) |
15 |
7 10 14
|
rspcedvd |
⊢ ( 𝑅 ∈ Ring → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∅ = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) ) |
16 |
11
|
mat0dimid |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ ( ∅ Mat 𝑅 ) ) = ∅ ) |
17 |
16
|
oveq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ( 1r ‘ ( ∅ Mat 𝑅 ) ) ) = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑅 ∈ Ring → ( ∅ = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ( 1r ‘ ( ∅ Mat 𝑅 ) ) ) ↔ ∅ = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∅ = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ( 1r ‘ ( ∅ Mat 𝑅 ) ) ) ↔ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∅ = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ∅ ) ) ) |
20 |
15 19
|
mpbird |
⊢ ( 𝑅 ∈ Ring → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∅ = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ( 1r ‘ ( ∅ Mat 𝑅 ) ) ) ) |
21 |
|
0fin |
⊢ ∅ ∈ Fin |
22 |
|
eqid |
⊢ ( Base ‘ ( ∅ Mat 𝑅 ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) |
23 |
|
eqid |
⊢ ( 1r ‘ ( ∅ Mat 𝑅 ) ) = ( 1r ‘ ( ∅ Mat 𝑅 ) ) |
24 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) = ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) |
25 |
|
eqid |
⊢ ( ∅ ScMat 𝑅 ) = ( ∅ ScMat 𝑅 ) |
26 |
5 11 22 23 24 25
|
scmatel |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ∅ ∈ ( ∅ ScMat 𝑅 ) ↔ ( ∅ ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∅ = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ( 1r ‘ ( ∅ Mat 𝑅 ) ) ) ) ) ) |
27 |
21 26
|
mpan |
⊢ ( 𝑅 ∈ Ring → ( ∅ ∈ ( ∅ ScMat 𝑅 ) ↔ ( ∅ ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ∅ = ( 𝑐 ( ·𝑠 ‘ ( ∅ Mat 𝑅 ) ) ( 1r ‘ ( ∅ Mat 𝑅 ) ) ) ) ) ) |
28 |
4 20 27
|
mpbir2and |
⊢ ( 𝑅 ∈ Ring → ∅ ∈ ( ∅ ScMat 𝑅 ) ) |