| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamumat1cl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mamumat1cl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | mamumat1cl.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | mamumat1cl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | mamumat1cl.i | ⊢ 𝐼  =  ( 𝑖  ∈  𝑀 ,  𝑗  ∈  𝑀  ↦  if ( 𝑖  =  𝑗 ,   1  ,   0  ) ) | 
						
							| 6 |  | mamumat1cl.m | ⊢ ( 𝜑  →  𝑀  ∈  Fin ) | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑖  =  𝐴  →  ( 𝑖  =  𝑗  ↔  𝐴  =  𝑗 ) ) | 
						
							| 8 | 7 | ifbid | ⊢ ( 𝑖  =  𝐴  →  if ( 𝑖  =  𝑗 ,   1  ,   0  )  =  if ( 𝐴  =  𝑗 ,   1  ,   0  ) ) | 
						
							| 9 |  | eqeq2 | ⊢ ( 𝑗  =  𝐽  →  ( 𝐴  =  𝑗  ↔  𝐴  =  𝐽 ) ) | 
						
							| 10 | 9 | ifbid | ⊢ ( 𝑗  =  𝐽  →  if ( 𝐴  =  𝑗 ,   1  ,   0  )  =  if ( 𝐴  =  𝐽 ,   1  ,   0  ) ) | 
						
							| 11 | 3 | fvexi | ⊢  1   ∈  V | 
						
							| 12 | 4 | fvexi | ⊢  0   ∈  V | 
						
							| 13 | 11 12 | ifex | ⊢ if ( 𝐴  =  𝐽 ,   1  ,   0  )  ∈  V | 
						
							| 14 | 8 10 5 13 | ovmpo | ⊢ ( ( 𝐴  ∈  𝑀  ∧  𝐽  ∈  𝑀 )  →  ( 𝐴 𝐼 𝐽 )  =  if ( 𝐴  =  𝐽 ,   1  ,   0  ) ) |