Step |
Hyp |
Ref |
Expression |
1 |
|
mamumat1cl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
mamumat1cl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
3 |
|
mamumat1cl.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
mamumat1cl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mamumat1cl.i |
⊢ 𝐼 = ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) |
6 |
|
mamumat1cl.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
7 |
|
eqeq1 |
⊢ ( 𝑖 = 𝐴 → ( 𝑖 = 𝑗 ↔ 𝐴 = 𝑗 ) ) |
8 |
7
|
ifbid |
⊢ ( 𝑖 = 𝐴 → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝐴 = 𝑗 , 1 , 0 ) ) |
9 |
|
eqeq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝐴 = 𝑗 ↔ 𝐴 = 𝐽 ) ) |
10 |
9
|
ifbid |
⊢ ( 𝑗 = 𝐽 → if ( 𝐴 = 𝑗 , 1 , 0 ) = if ( 𝐴 = 𝐽 , 1 , 0 ) ) |
11 |
3
|
fvexi |
⊢ 1 ∈ V |
12 |
4
|
fvexi |
⊢ 0 ∈ V |
13 |
11 12
|
ifex |
⊢ if ( 𝐴 = 𝐽 , 1 , 0 ) ∈ V |
14 |
8 10 5 13
|
ovmpo |
⊢ ( ( 𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀 ) → ( 𝐴 𝐼 𝐽 ) = if ( 𝐴 = 𝐽 , 1 , 0 ) ) |