Step |
Hyp |
Ref |
Expression |
1 |
|
mat1dim.a |
⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) |
2 |
|
mat1dim.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
mat1dim.o |
⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 |
4 |
|
snfi |
⊢ { 𝐸 } ∈ Fin |
5 |
4
|
a1i |
⊢ ( 𝐸 ∈ 𝑉 → { 𝐸 } ∈ Fin ) |
6 |
5
|
anim2i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝑅 ∈ Ring ∧ { 𝐸 } ∈ Fin ) ) |
7 |
6
|
ancomd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
1 8
|
mat0op |
⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ ( 0g ‘ 𝑅 ) ) ) |
10 |
7 9
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 0g ‘ 𝐴 ) = ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ ( 0g ‘ 𝑅 ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐸 ∈ 𝑉 ) |
12 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 0g ‘ 𝑅 ) ∈ V ) |
13 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ ( 0g ‘ 𝑅 ) ) = ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ ( 0g ‘ 𝑅 ) ) |
14 |
|
eqidd |
⊢ ( 𝑥 = 𝐸 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
15 |
|
eqidd |
⊢ ( 𝑦 = 𝐸 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
16 |
13 14 15
|
mposn |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ ( 0g ‘ 𝑅 ) ∈ V ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ ( 0g ‘ 𝑅 ) ) = { 〈 〈 𝐸 , 𝐸 〉 , ( 0g ‘ 𝑅 ) 〉 } ) |
17 |
3
|
eqcomi |
⊢ 〈 𝐸 , 𝐸 〉 = 𝑂 |
18 |
17
|
opeq1i |
⊢ 〈 〈 𝐸 , 𝐸 〉 , ( 0g ‘ 𝑅 ) 〉 = 〈 𝑂 , ( 0g ‘ 𝑅 ) 〉 |
19 |
18
|
sneqi |
⊢ { 〈 〈 𝐸 , 𝐸 〉 , ( 0g ‘ 𝑅 ) 〉 } = { 〈 𝑂 , ( 0g ‘ 𝑅 ) 〉 } |
20 |
16 19
|
eqtrdi |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ ( 0g ‘ 𝑅 ) ∈ V ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ ( 0g ‘ 𝑅 ) ) = { 〈 𝑂 , ( 0g ‘ 𝑅 ) 〉 } ) |
21 |
11 11 12 20
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ ( 0g ‘ 𝑅 ) ) = { 〈 𝑂 , ( 0g ‘ 𝑅 ) 〉 } ) |
22 |
10 21
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 0g ‘ 𝐴 ) = { 〈 𝑂 , ( 0g ‘ 𝑅 ) 〉 } ) |