Metamath Proof Explorer


Theorem mat1dimbas

Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019)

Ref Expression
Hypotheses mat1dim.a 𝐴 = ( { 𝐸 } Mat 𝑅 )
mat1dim.b 𝐵 = ( Base ‘ 𝑅 )
mat1dim.o 𝑂 = ⟨ 𝐸 , 𝐸
Assertion mat1dimbas ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐵 ) → { ⟨ 𝑂 , 𝑋 ⟩ } ∈ ( Base ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 mat1dim.a 𝐴 = ( { 𝐸 } Mat 𝑅 )
2 mat1dim.b 𝐵 = ( Base ‘ 𝑅 )
3 mat1dim.o 𝑂 = ⟨ 𝐸 , 𝐸
4 risset ( 𝑋𝐵 ↔ ∃ 𝑟𝐵 𝑟 = 𝑋 )
5 eqcom ( 𝑋 = 𝑟𝑟 = 𝑋 )
6 5 rexbii ( ∃ 𝑟𝐵 𝑋 = 𝑟 ↔ ∃ 𝑟𝐵 𝑟 = 𝑋 )
7 4 6 sylbb2 ( 𝑋𝐵 → ∃ 𝑟𝐵 𝑋 = 𝑟 )
8 7 3ad2ant3 ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐵 ) → ∃ 𝑟𝐵 𝑋 = 𝑟 )
9 opex 𝐸 , 𝐸 ⟩ ∈ V
10 3 9 eqeltri 𝑂 ∈ V
11 simp3 ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐵 ) → 𝑋𝐵 )
12 opthg ( ( 𝑂 ∈ V ∧ 𝑋𝐵 ) → ( ⟨ 𝑂 , 𝑋 ⟩ = ⟨ 𝑂 , 𝑟 ⟩ ↔ ( 𝑂 = 𝑂𝑋 = 𝑟 ) ) )
13 10 11 12 sylancr ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐵 ) → ( ⟨ 𝑂 , 𝑋 ⟩ = ⟨ 𝑂 , 𝑟 ⟩ ↔ ( 𝑂 = 𝑂𝑋 = 𝑟 ) ) )
14 opex 𝑂 , 𝑋 ⟩ ∈ V
15 sneqbg ( ⟨ 𝑂 , 𝑋 ⟩ ∈ V → ( { ⟨ 𝑂 , 𝑋 ⟩ } = { ⟨ 𝑂 , 𝑟 ⟩ } ↔ ⟨ 𝑂 , 𝑋 ⟩ = ⟨ 𝑂 , 𝑟 ⟩ ) )
16 14 15 ax-mp ( { ⟨ 𝑂 , 𝑋 ⟩ } = { ⟨ 𝑂 , 𝑟 ⟩ } ↔ ⟨ 𝑂 , 𝑋 ⟩ = ⟨ 𝑂 , 𝑟 ⟩ )
17 eqid 𝑂 = 𝑂
18 17 biantrur ( 𝑋 = 𝑟 ↔ ( 𝑂 = 𝑂𝑋 = 𝑟 ) )
19 13 16 18 3bitr4g ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐵 ) → ( { ⟨ 𝑂 , 𝑋 ⟩ } = { ⟨ 𝑂 , 𝑟 ⟩ } ↔ 𝑋 = 𝑟 ) )
20 19 rexbidv ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐵 ) → ( ∃ 𝑟𝐵 { ⟨ 𝑂 , 𝑋 ⟩ } = { ⟨ 𝑂 , 𝑟 ⟩ } ↔ ∃ 𝑟𝐵 𝑋 = 𝑟 ) )
21 8 20 mpbird ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐵 ) → ∃ 𝑟𝐵 { ⟨ 𝑂 , 𝑋 ⟩ } = { ⟨ 𝑂 , 𝑟 ⟩ } )
22 1 2 3 mat1dimelbas ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( { ⟨ 𝑂 , 𝑋 ⟩ } ∈ ( Base ‘ 𝐴 ) ↔ ∃ 𝑟𝐵 { ⟨ 𝑂 , 𝑋 ⟩ } = { ⟨ 𝑂 , 𝑟 ⟩ } ) )
23 22 3adant3 ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐵 ) → ( { ⟨ 𝑂 , 𝑋 ⟩ } ∈ ( Base ‘ 𝐴 ) ↔ ∃ 𝑟𝐵 { ⟨ 𝑂 , 𝑋 ⟩ } = { ⟨ 𝑂 , 𝑟 ⟩ } ) )
24 21 23 mpbird ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐵 ) → { ⟨ 𝑂 , 𝑋 ⟩ } ∈ ( Base ‘ 𝐴 ) )