Metamath Proof Explorer


Theorem mat1dimid

Description: The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019)

Ref Expression
Hypotheses mat1dim.a 𝐴 = ( { 𝐸 } Mat 𝑅 )
mat1dim.b 𝐵 = ( Base ‘ 𝑅 )
mat1dim.o 𝑂 = ⟨ 𝐸 , 𝐸
Assertion mat1dimid ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 1r𝐴 ) = { ⟨ 𝑂 , ( 1r𝑅 ) ⟩ } )

Proof

Step Hyp Ref Expression
1 mat1dim.a 𝐴 = ( { 𝐸 } Mat 𝑅 )
2 mat1dim.b 𝐵 = ( Base ‘ 𝑅 )
3 mat1dim.o 𝑂 = ⟨ 𝐸 , 𝐸
4 snfi { 𝐸 } ∈ Fin
5 4 a1i ( 𝐸𝑉 → { 𝐸 } ∈ Fin )
6 5 anim2i ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 𝑅 ∈ Ring ∧ { 𝐸 } ∈ Fin ) )
7 6 ancomd ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) )
8 eqid ( 1r𝑅 ) = ( 1r𝑅 )
9 eqid ( 0g𝑅 ) = ( 0g𝑅 )
10 1 8 9 mat1 ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) = ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
11 7 10 syl ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 1r𝐴 ) = ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
12 simpr ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐸𝑉 )
13 fvex ( 1r𝑅 ) ∈ V
14 fvex ( 0g𝑅 ) ∈ V
15 13 14 ifex if ( 𝐸 = 𝐸 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ∈ V
16 15 a1i ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → if ( 𝐸 = 𝐸 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ∈ V )
17 eqid ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
18 eqeq1 ( 𝑥 = 𝐸 → ( 𝑥 = 𝑦𝐸 = 𝑦 ) )
19 18 ifbid ( 𝑥 = 𝐸 → if ( 𝑥 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) = if ( 𝐸 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
20 eqeq2 ( 𝑦 = 𝐸 → ( 𝐸 = 𝑦𝐸 = 𝐸 ) )
21 20 ifbid ( 𝑦 = 𝐸 → if ( 𝐸 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) = if ( 𝐸 = 𝐸 , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
22 17 19 21 mposn ( ( 𝐸𝑉𝐸𝑉 ∧ if ( 𝐸 = 𝐸 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ∈ V ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = { ⟨ ⟨ 𝐸 , 𝐸 ⟩ , if ( 𝐸 = 𝐸 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ⟩ } )
23 12 12 16 22 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = { ⟨ ⟨ 𝐸 , 𝐸 ⟩ , if ( 𝐸 = 𝐸 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ⟩ } )
24 eqid 𝐸 = 𝐸
25 24 iftruei if ( 𝐸 = 𝐸 , ( 1r𝑅 ) , ( 0g𝑅 ) ) = ( 1r𝑅 )
26 25 opeq2i ⟨ ⟨ 𝐸 , 𝐸 ⟩ , if ( 𝐸 = 𝐸 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ⟩ = ⟨ ⟨ 𝐸 , 𝐸 ⟩ , ( 1r𝑅 ) ⟩
27 26 sneqi { ⟨ ⟨ 𝐸 , 𝐸 ⟩ , if ( 𝐸 = 𝐸 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ⟩ } = { ⟨ ⟨ 𝐸 , 𝐸 ⟩ , ( 1r𝑅 ) ⟩ }
28 23 27 eqtrdi ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = { ⟨ ⟨ 𝐸 , 𝐸 ⟩ , ( 1r𝑅 ) ⟩ } )
29 3 opeq1i 𝑂 , ( 1r𝑅 ) ⟩ = ⟨ ⟨ 𝐸 , 𝐸 ⟩ , ( 1r𝑅 ) ⟩
30 29 sneqi { ⟨ 𝑂 , ( 1r𝑅 ) ⟩ } = { ⟨ ⟨ 𝐸 , 𝐸 ⟩ , ( 1r𝑅 ) ⟩ }
31 28 30 eqtr4di ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = { ⟨ 𝑂 , ( 1r𝑅 ) ⟩ } )
32 11 31 eqtrd ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 1r𝐴 ) = { ⟨ 𝑂 , ( 1r𝑅 ) ⟩ } )