Step |
Hyp |
Ref |
Expression |
1 |
|
mat1rhmval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
mat1rhmval.a |
⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) |
3 |
|
mat1rhmval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
mat1rhmval.o |
⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 |
5 |
|
mat1rhmval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) |
8 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Grp ) |
10 |
|
snfi |
⊢ { 𝐸 } ∈ Fin |
11 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Ring ) |
12 |
2
|
matgrp |
⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Grp ) |
13 |
10 11 12
|
sylancr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐴 ∈ Grp ) |
14 |
1 2 3 4 5
|
mat1f |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 : 𝐾 ⟶ 𝐵 ) |
15 |
11
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑅 ∈ Ring ) |
16 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐸 ∈ 𝑉 ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐸 ∈ 𝑉 ) |
18 |
|
simpl |
⊢ ( ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → 𝑤 ∈ 𝐾 ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑤 ∈ 𝐾 ) |
20 |
1 2 3 4 5
|
mat1rhmelval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) = 𝑤 ) |
21 |
15 17 19 20
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) = 𝑤 ) |
22 |
|
simpr |
⊢ ( ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → 𝑦 ∈ 𝐾 ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑦 ∈ 𝐾 ) |
24 |
1 2 3 4 5
|
mat1rhmelval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) = 𝑦 ) |
25 |
15 17 23 24
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) = 𝑦 ) |
26 |
21 25
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( +g ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) = ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) |
27 |
1 2 3 4 5
|
mat1rhmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
28 |
15 17 19 27
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
29 |
1 2 3 4 5
|
mat1rhmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
30 |
15 17 23 29
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
31 |
|
snidg |
⊢ ( 𝐸 ∈ 𝑉 → 𝐸 ∈ { 𝐸 } ) |
32 |
31 31
|
jca |
⊢ ( 𝐸 ∈ 𝑉 → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) |
35 |
2 3 7 6
|
matplusgcell |
⊢ ( ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) ∧ ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) = ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( +g ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) |
36 |
28 30 34 35
|
syl21anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) = ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( +g ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) |
37 |
1 6
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
38 |
15 19 23 37
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
39 |
1 2 3 4 5
|
mat1rhmelval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) |
40 |
15 17 38 39
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) |
41 |
26 36 40
|
3eqtr4rd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) |
42 |
|
oveq1 |
⊢ ( 𝑖 = 𝐸 → ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) ) |
43 |
|
oveq1 |
⊢ ( 𝑖 = 𝐸 → ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) |
44 |
42 43
|
eqeq12d |
⊢ ( 𝑖 = 𝐸 → ( ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
45 |
|
oveq2 |
⊢ ( 𝑗 = 𝐸 → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) ) |
46 |
|
oveq2 |
⊢ ( 𝑗 = 𝐸 → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) |
47 |
45 46
|
eqeq12d |
⊢ ( 𝑗 = 𝐸 → ( ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
48 |
44 47
|
2ralsng |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
49 |
16 16 48
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
51 |
41 50
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) |
52 |
1 2 3 4 5
|
mat1rhmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ) |
53 |
15 17 38 52
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ) |
54 |
2
|
matring |
⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
55 |
10 11 54
|
sylancr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐴 ∈ Ring ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐴 ∈ Ring ) |
57 |
3 7
|
ringacl |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
58 |
56 28 30 57
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
59 |
2 3
|
eqmat |
⊢ ( ( ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
60 |
53 58 59
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
61 |
51 60
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ) |
62 |
1 3 6 7 9 13 14 61
|
isghmd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝐴 ) ) |