Metamath Proof Explorer


Theorem mat1mhm

Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k 𝐾 = ( Base ‘ 𝑅 )
mat1rhmval.a 𝐴 = ( { 𝐸 } Mat 𝑅 )
mat1rhmval.b 𝐵 = ( Base ‘ 𝐴 )
mat1rhmval.o 𝑂 = ⟨ 𝐸 , 𝐸
mat1rhmval.f 𝐹 = ( 𝑥𝐾 ↦ { ⟨ 𝑂 , 𝑥 ⟩ } )
mat1mhm.m 𝑀 = ( mulGrp ‘ 𝑅 )
mat1mhm.n 𝑁 = ( mulGrp ‘ 𝐴 )
Assertion mat1mhm ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) )

Proof

Step Hyp Ref Expression
1 mat1rhmval.k 𝐾 = ( Base ‘ 𝑅 )
2 mat1rhmval.a 𝐴 = ( { 𝐸 } Mat 𝑅 )
3 mat1rhmval.b 𝐵 = ( Base ‘ 𝐴 )
4 mat1rhmval.o 𝑂 = ⟨ 𝐸 , 𝐸
5 mat1rhmval.f 𝐹 = ( 𝑥𝐾 ↦ { ⟨ 𝑂 , 𝑥 ⟩ } )
6 mat1mhm.m 𝑀 = ( mulGrp ‘ 𝑅 )
7 mat1mhm.n 𝑁 = ( mulGrp ‘ 𝐴 )
8 6 ringmgp ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd )
9 8 adantr ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝑀 ∈ Mnd )
10 snfi { 𝐸 } ∈ Fin
11 simpl ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝑅 ∈ Ring )
12 2 matring ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
13 10 11 12 sylancr ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐴 ∈ Ring )
14 7 ringmgp ( 𝐴 ∈ Ring → 𝑁 ∈ Mnd )
15 13 14 syl ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝑁 ∈ Mnd )
16 1 2 3 4 5 mat1f ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐹 : 𝐾𝐵 )
17 ringmnd ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd )
18 17 adantr ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝑅 ∈ Mnd )
19 18 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → 𝑅 ∈ Mnd )
20 simpr ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐸𝑉 )
21 20 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → 𝐸𝑉 )
22 simpll ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → 𝑅 ∈ Ring )
23 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
24 snidg ( 𝐸𝑉𝐸 ∈ { 𝐸 } )
25 24 ad2antlr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → 𝐸 ∈ { 𝐸 } )
26 simprl ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → 𝑤𝐾 )
27 1 2 23 4 5 mat1rhmcl ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾 ) → ( 𝐹𝑤 ) ∈ ( Base ‘ 𝐴 ) )
28 22 21 26 27 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐹𝑤 ) ∈ ( Base ‘ 𝐴 ) )
29 2 1 23 25 25 28 matecld ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) ∈ 𝐾 )
30 simprr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → 𝑦𝐾 )
31 1 2 23 4 5 mat1rhmcl ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾 ) → ( 𝐹𝑦 ) ∈ ( Base ‘ 𝐴 ) )
32 22 21 30 31 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐹𝑦 ) ∈ ( Base ‘ 𝐴 ) )
33 2 1 23 25 25 32 matecld ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) ∈ 𝐾 )
34 eqid ( .r𝑅 ) = ( .r𝑅 )
35 1 34 ringcl ( ( 𝑅 ∈ Ring ∧ ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) ∈ 𝐾 ∧ ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) ∈ 𝐾 ) → ( ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) ( .r𝑅 ) ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) ) ∈ 𝐾 )
36 22 29 33 35 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) ( .r𝑅 ) ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) ) ∈ 𝐾 )
37 oveq2 ( 𝑒 = 𝐸 → ( 𝐸 ( 𝐹𝑤 ) 𝑒 ) = ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) )
38 oveq1 ( 𝑒 = 𝐸 → ( 𝑒 ( 𝐹𝑦 ) 𝐸 ) = ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) )
39 37 38 oveq12d ( 𝑒 = 𝐸 → ( ( 𝐸 ( 𝐹𝑤 ) 𝑒 ) ( .r𝑅 ) ( 𝑒 ( 𝐹𝑦 ) 𝐸 ) ) = ( ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) ( .r𝑅 ) ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) ) )
40 39 adantl ( ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) ∧ 𝑒 = 𝐸 ) → ( ( 𝐸 ( 𝐹𝑤 ) 𝑒 ) ( .r𝑅 ) ( 𝑒 ( 𝐹𝑦 ) 𝐸 ) ) = ( ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) ( .r𝑅 ) ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) ) )
41 1 19 21 36 40 gsumsnd ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹𝑤 ) 𝑒 ) ( .r𝑅 ) ( 𝑒 ( 𝐹𝑦 ) 𝐸 ) ) ) ) = ( ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) ( .r𝑅 ) ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) ) )
42 1 2 3 4 5 mat1rhmelval ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾 ) → ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) = 𝑤 )
43 22 21 26 42 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) = 𝑤 )
44 1 2 3 4 5 mat1rhmelval ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾 ) → ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) = 𝑦 )
45 22 21 30 44 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) = 𝑦 )
46 43 45 oveq12d ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( ( 𝐸 ( 𝐹𝑤 ) 𝐸 ) ( .r𝑅 ) ( 𝐸 ( 𝐹𝑦 ) 𝐸 ) ) = ( 𝑤 ( .r𝑅 ) 𝑦 ) )
47 41 46 eqtrd ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹𝑤 ) 𝑒 ) ( .r𝑅 ) ( 𝑒 ( 𝐹𝑦 ) 𝐸 ) ) ) ) = ( 𝑤 ( .r𝑅 ) 𝑦 ) )
48 1 2 3 4 5 mat1rhmcl ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾 ) → ( 𝐹𝑤 ) ∈ 𝐵 )
49 22 21 26 48 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐹𝑤 ) ∈ 𝐵 )
50 1 2 3 4 5 mat1rhmcl ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾 ) → ( 𝐹𝑦 ) ∈ 𝐵 )
51 22 21 30 50 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐹𝑦 ) ∈ 𝐵 )
52 49 51 jca ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( ( 𝐹𝑤 ) ∈ 𝐵 ∧ ( 𝐹𝑦 ) ∈ 𝐵 ) )
53 24 24 jca ( 𝐸𝑉 → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) )
54 53 ad2antlr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) )
55 eqid ( .r𝐴 ) = ( .r𝐴 )
56 2 3 55 matmulcell ( ( 𝑅 ∈ Ring ∧ ( ( 𝐹𝑤 ) ∈ 𝐵 ∧ ( 𝐹𝑦 ) ∈ 𝐵 ) ∧ ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) → ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝐸 ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹𝑤 ) 𝑒 ) ( .r𝑅 ) ( 𝑒 ( 𝐹𝑦 ) 𝐸 ) ) ) ) )
57 22 52 54 56 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝐸 ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹𝑤 ) 𝑒 ) ( .r𝑅 ) ( 𝑒 ( 𝐹𝑦 ) 𝐸 ) ) ) ) )
58 1 34 ringcl ( ( 𝑅 ∈ Ring ∧ 𝑤𝐾𝑦𝐾 ) → ( 𝑤 ( .r𝑅 ) 𝑦 ) ∈ 𝐾 )
59 22 26 30 58 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝑤 ( .r𝑅 ) 𝑦 ) ∈ 𝐾 )
60 1 2 3 4 5 mat1rhmelval ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ ( 𝑤 ( .r𝑅 ) 𝑦 ) ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝑤 ( .r𝑅 ) 𝑦 ) )
61 22 21 59 60 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝑤 ( .r𝑅 ) 𝑦 ) )
62 47 57 61 3eqtr4rd ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝐸 ) )
63 oveq1 ( 𝑖 = 𝐸 → ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) )
64 oveq1 ( 𝑖 = 𝐸 → ( 𝑖 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) )
65 63 64 eqeq12d ( 𝑖 = 𝐸 → ( ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) ) )
66 oveq2 ( 𝑗 = 𝐸 → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝐸 ) )
67 oveq2 ( 𝑗 = 𝐸 → ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝐸 ) )
68 66 67 eqeq12d ( 𝑗 = 𝐸 → ( ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝐸 ) ) )
69 65 68 2ralsng ( ( 𝐸𝑉𝐸𝑉 ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝐸 ) ) )
70 20 69 sylancom ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝐸 ) ) )
71 70 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝐸 ) ) )
72 62 71 mpbird ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) )
73 1 2 3 4 5 mat1rhmcl ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ ( 𝑤 ( .r𝑅 ) 𝑦 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) ∈ 𝐵 )
74 22 21 59 73 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) ∈ 𝐵 )
75 13 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → 𝐴 ∈ Ring )
76 3 55 ringcl ( ( 𝐴 ∈ Ring ∧ ( 𝐹𝑤 ) ∈ 𝐵 ∧ ( 𝐹𝑦 ) ∈ 𝐵 ) → ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) ∈ 𝐵 )
77 75 49 51 76 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) ∈ 𝐵 )
78 2 3 eqmat ( ( ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) ∈ 𝐵 ∧ ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) ↔ ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) ) )
79 74 77 78 syl2anc ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) ↔ ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) 𝑗 ) ) )
80 72 79 mpbird ( ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) ∧ ( 𝑤𝐾𝑦𝐾 ) ) → ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) )
81 80 ralrimivva ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ∀ 𝑤𝐾𝑦𝐾 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) )
82 eqid ( 1r𝑅 ) = ( 1r𝑅 )
83 1 82 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ 𝐾 )
84 83 adantr ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 1r𝑅 ) ∈ 𝐾 )
85 1 2 3 4 5 mat1rhmval ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ ( 1r𝑅 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 1r𝑅 ) ) = { ⟨ 𝑂 , ( 1r𝑅 ) ⟩ } )
86 84 85 mpd3an3 ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 𝐹 ‘ ( 1r𝑅 ) ) = { ⟨ 𝑂 , ( 1r𝑅 ) ⟩ } )
87 2 1 4 mat1dimid ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 1r𝐴 ) = { ⟨ 𝑂 , ( 1r𝑅 ) ⟩ } )
88 86 87 eqtr4d ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 𝐹 ‘ ( 1r𝑅 ) ) = ( 1r𝐴 ) )
89 16 81 88 3jca ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 𝐹 : 𝐾𝐵 ∧ ∀ 𝑤𝐾𝑦𝐾 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 1r𝑅 ) ) = ( 1r𝐴 ) ) )
90 6 1 mgpbas 𝐾 = ( Base ‘ 𝑀 )
91 7 3 mgpbas 𝐵 = ( Base ‘ 𝑁 )
92 6 34 mgpplusg ( .r𝑅 ) = ( +g𝑀 )
93 7 55 mgpplusg ( .r𝐴 ) = ( +g𝑁 )
94 6 82 ringidval ( 1r𝑅 ) = ( 0g𝑀 )
95 eqid ( 1r𝐴 ) = ( 1r𝐴 )
96 7 95 ringidval ( 1r𝐴 ) = ( 0g𝑁 )
97 90 91 92 93 94 96 ismhm ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ∧ ( 𝐹 : 𝐾𝐵 ∧ ∀ 𝑤𝐾𝑦𝐾 ( 𝐹 ‘ ( 𝑤 ( .r𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑤 ) ( .r𝐴 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 1r𝑅 ) ) = ( 1r𝐴 ) ) ) )
98 9 15 89 97 syl21anbrc ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) )