Step |
Hyp |
Ref |
Expression |
1 |
|
mat1rhmval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
mat1rhmval.a |
⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) |
3 |
|
mat1rhmval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
mat1rhmval.o |
⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 |
5 |
|
mat1rhmval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) |
6 |
|
mat1mhm.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
7 |
|
mat1mhm.n |
⊢ 𝑁 = ( mulGrp ‘ 𝐴 ) |
8 |
6
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑀 ∈ Mnd ) |
10 |
|
snfi |
⊢ { 𝐸 } ∈ Fin |
11 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Ring ) |
12 |
2
|
matring |
⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
13 |
10 11 12
|
sylancr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐴 ∈ Ring ) |
14 |
7
|
ringmgp |
⊢ ( 𝐴 ∈ Ring → 𝑁 ∈ Mnd ) |
15 |
13 14
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑁 ∈ Mnd ) |
16 |
1 2 3 4 5
|
mat1f |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 : 𝐾 ⟶ 𝐵 ) |
17 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
18 |
17
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Mnd ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑅 ∈ Mnd ) |
20 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐸 ∈ 𝑉 ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐸 ∈ 𝑉 ) |
22 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑅 ∈ Ring ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
24 |
|
snidg |
⊢ ( 𝐸 ∈ 𝑉 → 𝐸 ∈ { 𝐸 } ) |
25 |
24
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐸 ∈ { 𝐸 } ) |
26 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑤 ∈ 𝐾 ) |
27 |
1 2 23 4 5
|
mat1rhmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( Base ‘ 𝐴 ) ) |
28 |
22 21 26 27
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ( Base ‘ 𝐴 ) ) |
29 |
2 1 23 25 25 28
|
matecld |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ∈ 𝐾 ) |
30 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑦 ∈ 𝐾 ) |
31 |
1 2 23 4 5
|
mat1rhmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐴 ) ) |
32 |
22 21 30 31
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐴 ) ) |
33 |
2 1 23 25 25 32
|
matecld |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ∈ 𝐾 ) |
34 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
35 |
1 34
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ∈ 𝐾 ∧ ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ∈ 𝐾 ) → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ∈ 𝐾 ) |
36 |
22 29 33 35
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ∈ 𝐾 ) |
37 |
|
oveq2 |
⊢ ( 𝑒 = 𝐸 → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) = ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ) |
38 |
|
oveq1 |
⊢ ( 𝑒 = 𝐸 → ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) = ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) |
39 |
37 38
|
oveq12d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) = ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) |
40 |
39
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) ∧ 𝑒 = 𝐸 ) → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) = ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) |
41 |
1 19 21 36 40
|
gsumsnd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) ) = ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) |
42 |
1 2 3 4 5
|
mat1rhmelval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) = 𝑤 ) |
43 |
22 21 26 42
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) = 𝑤 ) |
44 |
1 2 3 4 5
|
mat1rhmelval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) = 𝑦 ) |
45 |
22 21 30 44
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) = 𝑦 ) |
46 |
43 45
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) = ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) |
47 |
41 46
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) ) = ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) |
48 |
1 2 3 4 5
|
mat1rhmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
49 |
22 21 26 48
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
50 |
1 2 3 4 5
|
mat1rhmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
51 |
22 21 30 50
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
52 |
49 51
|
jca |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) ) |
53 |
24 24
|
jca |
⊢ ( 𝐸 ∈ 𝑉 → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) |
54 |
53
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) |
55 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
56 |
2 3 55
|
matmulcell |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) ∧ ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) ) ) |
57 |
22 52 54 56
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) ) ) |
58 |
1 34
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
59 |
22 26 30 58
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
60 |
1 2 3 4 5
|
mat1rhmelval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) |
61 |
22 21 59 60
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) |
62 |
47 57 61
|
3eqtr4rd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) |
63 |
|
oveq1 |
⊢ ( 𝑖 = 𝐸 → ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) ) |
64 |
|
oveq1 |
⊢ ( 𝑖 = 𝐸 → ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) |
65 |
63 64
|
eqeq12d |
⊢ ( 𝑖 = 𝐸 → ( ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
66 |
|
oveq2 |
⊢ ( 𝑗 = 𝐸 → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) ) |
67 |
|
oveq2 |
⊢ ( 𝑗 = 𝐸 → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) |
68 |
66 67
|
eqeq12d |
⊢ ( 𝑗 = 𝐸 → ( ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
69 |
65 68
|
2ralsng |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
70 |
20 69
|
sylancom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
72 |
62 71
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) |
73 |
1 2 3 4 5
|
mat1rhmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ) |
74 |
22 21 59 73
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ) |
75 |
13
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐴 ∈ Ring ) |
76 |
3 55
|
ringcl |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
77 |
75 49 51 76
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
78 |
2 3
|
eqmat |
⊢ ( ( ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
79 |
74 77 78
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
80 |
72 79
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ) |
81 |
80
|
ralrimivva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ∀ 𝑤 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ) |
82 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
83 |
1 82
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
84 |
83
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
85 |
1 2 3 4 5
|
mat1rhmval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = { 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 } ) |
86 |
84 85
|
mpd3an3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = { 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 } ) |
87 |
2 1 4
|
mat1dimid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 1r ‘ 𝐴 ) = { 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 } ) |
88 |
86 87
|
eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝐴 ) ) |
89 |
16 81 88
|
3jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐹 : 𝐾 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝐴 ) ) ) |
90 |
6 1
|
mgpbas |
⊢ 𝐾 = ( Base ‘ 𝑀 ) |
91 |
7 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑁 ) |
92 |
6 34
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
93 |
7 55
|
mgpplusg |
⊢ ( .r ‘ 𝐴 ) = ( +g ‘ 𝑁 ) |
94 |
6 82
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
95 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
96 |
7 95
|
ringidval |
⊢ ( 1r ‘ 𝐴 ) = ( 0g ‘ 𝑁 ) |
97 |
90 91 92 93 94 96
|
ismhm |
⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ∧ ( 𝐹 : 𝐾 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝐴 ) ) ) ) |
98 |
9 15 89 97
|
syl21anbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |