| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mat1.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 3 |  | mat1.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mat1ov.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 5 |  | mat1ov.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 6 |  | mat1ov.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑁 ) | 
						
							| 7 |  | mat1ov.j | ⊢ ( 𝜑  →  𝐽  ∈  𝑁 ) | 
						
							| 8 |  | mat1ov.u | ⊢ 𝑈  =  ( 1r ‘ 𝐴 ) | 
						
							| 9 | 1 2 3 | mat1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,   1  ,   0  ) ) ) | 
						
							| 10 | 4 5 9 | syl2anc | ⊢ ( 𝜑  →  ( 1r ‘ 𝐴 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,   1  ,   0  ) ) ) | 
						
							| 11 | 8 10 | eqtrid | ⊢ ( 𝜑  →  𝑈  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,   1  ,   0  ) ) ) | 
						
							| 12 |  | eqeq12 | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑗  =  𝐽 )  →  ( 𝑖  =  𝑗  ↔  𝐼  =  𝐽 ) ) | 
						
							| 13 | 12 | ifbid | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑗  =  𝐽 )  →  if ( 𝑖  =  𝑗 ,   1  ,   0  )  =  if ( 𝐼  =  𝐽 ,   1  ,   0  ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑖  =  𝐼  ∧  𝑗  =  𝐽 ) )  →  if ( 𝑖  =  𝑗 ,   1  ,   0  )  =  if ( 𝐼  =  𝐽 ,   1  ,   0  ) ) | 
						
							| 15 | 2 | fvexi | ⊢  1   ∈  V | 
						
							| 16 | 3 | fvexi | ⊢  0   ∈  V | 
						
							| 17 | 15 16 | ifex | ⊢ if ( 𝐼  =  𝐽 ,   1  ,   0  )  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  if ( 𝐼  =  𝐽 ,   1  ,   0  )  ∈  V ) | 
						
							| 19 | 11 14 6 7 18 | ovmpod | ⊢ ( 𝜑  →  ( 𝐼 𝑈 𝐽 )  =  if ( 𝐼  =  𝐽 ,   1  ,   0  ) ) |