Step |
Hyp |
Ref |
Expression |
1 |
|
mat1rhmval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
mat1rhmval.a |
⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) |
3 |
|
mat1rhmval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
mat1rhmval.o |
⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 |
5 |
|
mat1rhmval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) |
6 |
1 2 3 4 5
|
mat1rhm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑅 RingHom 𝐴 ) ) |
7 |
1 2 3 4 5
|
mat1f1o |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 : 𝐾 –1-1-onto→ 𝐵 ) |
8 |
|
snfi |
⊢ { 𝐸 } ∈ Fin |
9 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Ring ) |
10 |
2
|
matring |
⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
11 |
8 9 10
|
sylancr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐴 ∈ Ring ) |
12 |
1 3
|
isrim |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ Ring ) → ( 𝐹 ∈ ( 𝑅 RingIso 𝐴 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝐴 ) ∧ 𝐹 : 𝐾 –1-1-onto→ 𝐵 ) ) ) |
13 |
11 12
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐹 ∈ ( 𝑅 RingIso 𝐴 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝐴 ) ∧ 𝐹 : 𝐾 –1-1-onto→ 𝐵 ) ) ) |
14 |
6 7 13
|
mpbir2and |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑅 RingIso 𝐴 ) ) |