Metamath Proof Explorer


Theorem mat1rngiso

Description: There is a ring isomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k 𝐾 = ( Base ‘ 𝑅 )
mat1rhmval.a 𝐴 = ( { 𝐸 } Mat 𝑅 )
mat1rhmval.b 𝐵 = ( Base ‘ 𝐴 )
mat1rhmval.o 𝑂 = ⟨ 𝐸 , 𝐸
mat1rhmval.f 𝐹 = ( 𝑥𝐾 ↦ { ⟨ 𝑂 , 𝑥 ⟩ } )
Assertion mat1rngiso ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐹 ∈ ( 𝑅 RingIso 𝐴 ) )

Proof

Step Hyp Ref Expression
1 mat1rhmval.k 𝐾 = ( Base ‘ 𝑅 )
2 mat1rhmval.a 𝐴 = ( { 𝐸 } Mat 𝑅 )
3 mat1rhmval.b 𝐵 = ( Base ‘ 𝐴 )
4 mat1rhmval.o 𝑂 = ⟨ 𝐸 , 𝐸
5 mat1rhmval.f 𝐹 = ( 𝑥𝐾 ↦ { ⟨ 𝑂 , 𝑥 ⟩ } )
6 1 2 3 4 5 mat1rhm ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐹 ∈ ( 𝑅 RingHom 𝐴 ) )
7 1 2 3 4 5 mat1f1o ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐹 : 𝐾1-1-onto𝐵 )
8 snfi { 𝐸 } ∈ Fin
9 simpl ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝑅 ∈ Ring )
10 2 matring ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
11 8 9 10 sylancr ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐴 ∈ Ring )
12 1 3 isrim ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ Ring ) → ( 𝐹 ∈ ( 𝑅 RingIso 𝐴 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝐴 ) ∧ 𝐹 : 𝐾1-1-onto𝐵 ) ) )
13 11 12 syldan ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → ( 𝐹 ∈ ( 𝑅 RingIso 𝐴 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝐴 ) ∧ 𝐹 : 𝐾1-1-onto𝐵 ) ) )
14 6 7 13 mpbir2and ( ( 𝑅 ∈ Ring ∧ 𝐸𝑉 ) → 𝐹 ∈ ( 𝑅 RingIso 𝐴 ) )