Step |
Hyp |
Ref |
Expression |
1 |
|
mat1scmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mat1scmat.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
hash1snb |
⊢ ( 𝑁 ∈ 𝑉 → ( ( ♯ ‘ 𝑁 ) = 1 ↔ ∃ 𝑒 𝑁 = { 𝑒 } ) ) |
4 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ) → 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ) |
5 |
|
eqid |
⊢ ( { 𝑒 } Mat 𝑅 ) = ( { 𝑒 } Mat 𝑅 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
|
eqid |
⊢ 〈 𝑒 , 𝑒 〉 = 〈 𝑒 , 𝑒 〉 |
8 |
5 6 7
|
mat1dimelbas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑒 ∈ V ) → ( 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ↔ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } ) ) |
9 |
8
|
elvd |
⊢ ( 𝑅 ∈ Ring → ( 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ↔ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑀 = { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } ) → 𝑀 = { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } ) |
11 |
|
vex |
⊢ 𝑒 ∈ V |
12 |
11
|
a1i |
⊢ ( 𝑐 ∈ ( Base ‘ 𝑅 ) → 𝑒 ∈ V ) |
13 |
5 6 7
|
mat1dimid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑒 ∈ V ) → ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) = { 〈 〈 𝑒 , 𝑒 〉 , ( 1r ‘ 𝑅 ) 〉 } ) |
14 |
12 13
|
sylan2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) = { 〈 〈 𝑒 , 𝑒 〉 , ( 1r ‘ 𝑅 ) 〉 } ) |
15 |
14
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) ) = ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) { 〈 〈 𝑒 , 𝑒 〉 , ( 1r ‘ 𝑅 ) 〉 } ) ) |
16 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
17 |
16 11
|
jctir |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 ∈ Ring ∧ 𝑒 ∈ V ) ) |
18 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) |
19 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
20 |
6 19
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
22 |
5 6 7
|
mat1dimscm |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑒 ∈ V ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) { 〈 〈 𝑒 , 𝑒 〉 , ( 1r ‘ 𝑅 ) 〉 } ) = { 〈 〈 𝑒 , 𝑒 〉 , ( 𝑐 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉 } ) |
23 |
17 18 21 22
|
syl12anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) { 〈 〈 𝑒 , 𝑒 〉 , ( 1r ‘ 𝑅 ) 〉 } ) = { 〈 〈 𝑒 , 𝑒 〉 , ( 𝑐 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉 } ) |
24 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
25 |
6 24 19
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑐 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑐 ) |
26 |
25
|
opeq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → 〈 〈 𝑒 , 𝑒 〉 , ( 𝑐 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉 = 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 ) |
27 |
26
|
sneqd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → { 〈 〈 𝑒 , 𝑒 〉 , ( 𝑐 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉 } = { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } ) |
28 |
15 23 27
|
3eqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } = ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑀 = { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } ) → { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } = ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) ) ) |
30 |
10 29
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑀 = { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } ) → 𝑀 = ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) ) ) |
31 |
30
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑀 = { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } → 𝑀 = ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) ) ) ) |
32 |
31
|
reximdva |
⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = { 〈 〈 𝑒 , 𝑒 〉 , 𝑐 〉 } → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) ) ) ) |
33 |
9 32
|
sylbid |
⊢ ( 𝑅 ∈ Ring → ( 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) ) ) ) |
34 |
33
|
imp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) ) ) |
35 |
|
snfi |
⊢ { 𝑒 } ∈ Fin |
36 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ) → 𝑅 ∈ Ring ) |
37 |
|
eqid |
⊢ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) = ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) |
38 |
|
eqid |
⊢ ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) = ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) |
39 |
|
eqid |
⊢ ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) = ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) |
40 |
|
eqid |
⊢ ( { 𝑒 } ScMat 𝑅 ) = ( { 𝑒 } ScMat 𝑅 ) |
41 |
6 5 37 38 39 40
|
scmatel |
⊢ ( ( { 𝑒 } ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑀 ∈ ( { 𝑒 } ScMat 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) ) ) ) ) |
42 |
35 36 41
|
sylancr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( { 𝑒 } ScMat 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠 ‘ ( { 𝑒 } Mat 𝑅 ) ) ( 1r ‘ ( { 𝑒 } Mat 𝑅 ) ) ) ) ) ) |
43 |
4 34 42
|
mpbir2and |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ) → 𝑀 ∈ ( { 𝑒 } ScMat 𝑅 ) ) |
44 |
43
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) → 𝑀 ∈ ( { 𝑒 } ScMat 𝑅 ) ) ) |
45 |
1
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
46 |
2 45
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
47 |
|
fvoveq1 |
⊢ ( 𝑁 = { 𝑒 } → ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ) |
48 |
46 47
|
syl5eq |
⊢ ( 𝑁 = { 𝑒 } → 𝐵 = ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ) |
49 |
48
|
eleq2d |
⊢ ( 𝑁 = { 𝑒 } → ( 𝑀 ∈ 𝐵 ↔ 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) ) ) |
50 |
|
oveq1 |
⊢ ( 𝑁 = { 𝑒 } → ( 𝑁 ScMat 𝑅 ) = ( { 𝑒 } ScMat 𝑅 ) ) |
51 |
50
|
eleq2d |
⊢ ( 𝑁 = { 𝑒 } → ( 𝑀 ∈ ( 𝑁 ScMat 𝑅 ) ↔ 𝑀 ∈ ( { 𝑒 } ScMat 𝑅 ) ) ) |
52 |
49 51
|
imbi12d |
⊢ ( 𝑁 = { 𝑒 } → ( ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( 𝑁 ScMat 𝑅 ) ) ↔ ( 𝑀 ∈ ( Base ‘ ( { 𝑒 } Mat 𝑅 ) ) → 𝑀 ∈ ( { 𝑒 } ScMat 𝑅 ) ) ) ) |
53 |
44 52
|
syl5ibr |
⊢ ( 𝑁 = { 𝑒 } → ( 𝑅 ∈ Ring → ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( 𝑁 ScMat 𝑅 ) ) ) ) |
54 |
53
|
exlimiv |
⊢ ( ∃ 𝑒 𝑁 = { 𝑒 } → ( 𝑅 ∈ Ring → ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( 𝑁 ScMat 𝑅 ) ) ) ) |
55 |
3 54
|
syl6bi |
⊢ ( 𝑁 ∈ 𝑉 → ( ( ♯ ‘ 𝑁 ) = 1 → ( 𝑅 ∈ Ring → ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( 𝑁 ScMat 𝑅 ) ) ) ) ) |
56 |
55
|
3imp |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑁 ) = 1 ∧ 𝑅 ∈ Ring ) → ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( 𝑁 ScMat 𝑅 ) ) ) |