| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat2pmatbas.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 2 |  | mat2pmatbas.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | mat2pmatbas.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | mat2pmatbas.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 5 |  | mat2pmatbas.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 6 |  | mat2pmatbas0.h | ⊢ 𝐻  =  ( Base ‘ 𝐶 ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑁  ∈  Fin ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  ∈  Ring ) | 
						
							| 9 | 2 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 10 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 11 | 3 10 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 13 | 7 8 12 | 3jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 1r ‘ 𝐴 )  ∈  𝐵 ) ) | 
						
							| 14 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 15 | 1 2 3 4 14 | mat2pmatvalel | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 1r ‘ 𝐴 )  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑇 ‘ ( 1r ‘ 𝐴 ) ) 𝑗 )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 1r ‘ 𝐴 ) 𝑗 ) ) ) | 
						
							| 16 | 13 15 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑇 ‘ ( 1r ‘ 𝐴 ) ) 𝑗 )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 1r ‘ 𝐴 ) 𝑗 ) ) ) | 
						
							| 17 |  | fvif | ⊢ ( ( algSc ‘ 𝑃 ) ‘ if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  if ( 𝑖  =  𝑗 ,  ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ,  ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 19 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 20 | 4 14 18 19 | ply1scl1 | ⊢ ( 𝑅  ∈  Ring  →  ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 24 | 4 14 22 23 | ply1scl0 | ⊢ ( 𝑅  ∈  Ring  →  ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 26 | 21 25 | ifeq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  if ( 𝑖  =  𝑗 ,  ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ,  ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) )  =  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 27 | 17 26 | eqtrid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 28 | 7 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑁  ∈  Fin ) | 
						
							| 29 | 8 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑅  ∈  Ring ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 34 | 2 18 22 28 29 31 33 10 | mat1ov | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 1r ‘ 𝐴 ) 𝑗 )  =  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 1r ‘ 𝐴 ) 𝑗 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 36 | 4 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 37 | 36 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑃  ∈  Ring ) | 
						
							| 38 |  | eqid | ⊢ ( 1r ‘ 𝐶 )  =  ( 1r ‘ 𝐶 ) | 
						
							| 39 | 5 19 23 28 37 31 33 38 | mat1ov | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 )  =  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 40 | 27 35 39 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 1r ‘ 𝐴 ) 𝑗 ) )  =  ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) | 
						
							| 41 | 16 40 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑇 ‘ ( 1r ‘ 𝐴 ) ) 𝑗 )  =  ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) | 
						
							| 42 | 41 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑇 ‘ ( 1r ‘ 𝐴 ) ) 𝑗 )  =  ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) | 
						
							| 43 | 1 2 3 4 5 6 | mat2pmatbas0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 1r ‘ 𝐴 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 1r ‘ 𝐴 ) )  ∈  𝐻 ) | 
						
							| 44 | 13 43 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑇 ‘ ( 1r ‘ 𝐴 ) )  ∈  𝐻 ) | 
						
							| 45 | 4 5 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 46 | 6 38 | ringidcl | ⊢ ( 𝐶  ∈  Ring  →  ( 1r ‘ 𝐶 )  ∈  𝐻 ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐶 )  ∈  𝐻 ) | 
						
							| 48 | 5 6 | eqmat | ⊢ ( ( ( 𝑇 ‘ ( 1r ‘ 𝐴 ) )  ∈  𝐻  ∧  ( 1r ‘ 𝐶 )  ∈  𝐻 )  →  ( ( 𝑇 ‘ ( 1r ‘ 𝐴 ) )  =  ( 1r ‘ 𝐶 )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑇 ‘ ( 1r ‘ 𝐴 ) ) 𝑗 )  =  ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) ) | 
						
							| 49 | 44 47 48 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 𝑇 ‘ ( 1r ‘ 𝐴 ) )  =  ( 1r ‘ 𝐶 )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑇 ‘ ( 1r ‘ 𝐴 ) ) 𝑗 )  =  ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) ) | 
						
							| 50 | 42 49 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑇 ‘ ( 1r ‘ 𝐴 ) )  =  ( 1r ‘ 𝐶 ) ) |