Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatbas.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
2 |
|
mat2pmatbas.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
mat2pmatbas.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
mat2pmatbas.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
5 |
|
mat2pmatbas.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
6 |
|
mat2pmatbas0.h |
⊢ 𝐻 = ( Base ‘ 𝐶 ) |
7 |
1 2 3 4 5 6
|
mat2pmatf |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 ⟶ 𝐻 ) |
8 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
9 |
8
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ 𝐵 ) ) |
10 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ 𝐵 ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ) |
12 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
13 |
1 2 3 4 12
|
mat2pmatvalel |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑇 ‘ 𝑥 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) |
14 |
11 13
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑇 ‘ 𝑥 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) |
15 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
16 |
15
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝐵 ) ) |
17 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝐵 ) ) |
18 |
16 17
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
19 |
1 2 3 4 12
|
mat2pmatvalel |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑇 ‘ 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) |
20 |
18 19
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑇 ‘ 𝑦 ) 𝑗 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) |
21 |
14 20
|
eqeq12d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( 𝑖 ( 𝑇 ‘ 𝑥 ) 𝑗 ) = ( 𝑖 ( 𝑇 ‘ 𝑦 ) 𝑗 ) ↔ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
24 |
4 12 22 23
|
ply1sclf1 |
⊢ ( 𝑅 ∈ Ring → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑃 ) ) |
25 |
24
|
ad3antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑃 ) ) |
26 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑖 ∈ 𝑁 ) |
27 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑁 ) |
28 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑥 ∈ 𝐵 ) |
29 |
2 22 3 26 27 28
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 𝑥 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
30 |
|
simplrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑦 ∈ 𝐵 ) |
31 |
2 22 3 26 27 30
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 𝑦 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
32 |
|
f1veqaeq |
⊢ ( ( ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑃 ) ∧ ( ( 𝑖 𝑥 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑖 𝑦 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) → ( 𝑖 𝑥 𝑗 ) = ( 𝑖 𝑦 𝑗 ) ) ) |
33 |
25 29 31 32
|
syl12anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) → ( 𝑖 𝑥 𝑗 ) = ( 𝑖 𝑦 𝑗 ) ) ) |
34 |
21 33
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( 𝑖 ( 𝑇 ‘ 𝑥 ) 𝑗 ) = ( 𝑖 ( 𝑇 ‘ 𝑦 ) 𝑗 ) → ( 𝑖 𝑥 𝑗 ) = ( 𝑖 𝑦 𝑗 ) ) ) |
35 |
34
|
ralimdvva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ( 𝑇 ‘ 𝑥 ) 𝑗 ) = ( 𝑖 ( 𝑇 ‘ 𝑦 ) 𝑗 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑥 𝑗 ) = ( 𝑖 𝑦 𝑗 ) ) ) |
36 |
1 2 3 4 5 6
|
mat2pmatbas0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝐻 ) |
37 |
11 36
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝐻 ) |
38 |
1 2 3 4 5 6
|
mat2pmatbas0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑦 ) ∈ 𝐻 ) |
39 |
18 38
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑦 ) ∈ 𝐻 ) |
40 |
5 6
|
eqmat |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ 𝐻 ∧ ( 𝑇 ‘ 𝑦 ) ∈ 𝐻 ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ( 𝑇 ‘ 𝑥 ) 𝑗 ) = ( 𝑖 ( 𝑇 ‘ 𝑦 ) 𝑗 ) ) ) |
41 |
37 39 40
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ( 𝑇 ‘ 𝑥 ) 𝑗 ) = ( 𝑖 ( 𝑇 ‘ 𝑦 ) 𝑗 ) ) ) |
42 |
2 3
|
eqmat |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝑦 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑥 𝑗 ) = ( 𝑖 𝑦 𝑗 ) ) ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = 𝑦 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑥 𝑗 ) = ( 𝑖 𝑦 𝑗 ) ) ) |
44 |
35 41 43
|
3imtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
45 |
44
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
46 |
|
dff13 |
⊢ ( 𝑇 : 𝐵 –1-1→ 𝐻 ↔ ( 𝑇 : 𝐵 ⟶ 𝐻 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
47 |
7 45 46
|
sylanbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 –1-1→ 𝐻 ) |