Metamath Proof Explorer


Theorem mat2pmatfval

Description: Value of the matrix transformation. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses mat2pmatfval.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
mat2pmatfval.a 𝐴 = ( 𝑁 Mat 𝑅 )
mat2pmatfval.b 𝐵 = ( Base ‘ 𝐴 )
mat2pmatfval.p 𝑃 = ( Poly1𝑅 )
mat2pmatfval.s 𝑆 = ( algSc ‘ 𝑃 )
Assertion mat2pmatfval ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → 𝑇 = ( 𝑚𝐵 ↦ ( 𝑥𝑁 , 𝑦𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mat2pmatfval.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
2 mat2pmatfval.a 𝐴 = ( 𝑁 Mat 𝑅 )
3 mat2pmatfval.b 𝐵 = ( Base ‘ 𝐴 )
4 mat2pmatfval.p 𝑃 = ( Poly1𝑅 )
5 mat2pmatfval.s 𝑆 = ( algSc ‘ 𝑃 )
6 df-mat2pmat matToPolyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) )
7 6 a1i ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → matToPolyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) )
8 oveq12 ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) )
9 8 fveq2d ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) )
10 2 fveq2i ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) )
11 3 10 eqtr2i ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = 𝐵
12 9 11 eqtrdi ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 )
13 simpl ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → 𝑛 = 𝑁 )
14 2fveq3 ( 𝑟 = 𝑅 → ( algSc ‘ ( Poly1𝑟 ) ) = ( algSc ‘ ( Poly1𝑅 ) ) )
15 14 adantl ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( algSc ‘ ( Poly1𝑟 ) ) = ( algSc ‘ ( Poly1𝑅 ) ) )
16 4 fveq2i ( algSc ‘ 𝑃 ) = ( algSc ‘ ( Poly1𝑅 ) )
17 5 16 eqtr2i ( algSc ‘ ( Poly1𝑅 ) ) = 𝑆
18 15 17 eqtrdi ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( algSc ‘ ( Poly1𝑟 ) ) = 𝑆 )
19 18 fveq1d ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) = ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) )
20 13 13 19 mpoeq123dv ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) = ( 𝑥𝑁 , 𝑦𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) )
21 12 20 mpteq12dv ( ( 𝑛 = 𝑁𝑟 = 𝑅 ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) = ( 𝑚𝐵 ↦ ( 𝑥𝑁 , 𝑦𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) )
22 21 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) ∧ ( 𝑛 = 𝑁𝑟 = 𝑅 ) ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( algSc ‘ ( Poly1𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) = ( 𝑚𝐵 ↦ ( 𝑥𝑁 , 𝑦𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) )
23 simpl ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → 𝑁 ∈ Fin )
24 elex ( 𝑅𝑉𝑅 ∈ V )
25 24 adantl ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → 𝑅 ∈ V )
26 3 fvexi 𝐵 ∈ V
27 mptexg ( 𝐵 ∈ V → ( 𝑚𝐵 ↦ ( 𝑥𝑁 , 𝑦𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ∈ V )
28 26 27 mp1i ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝑚𝐵 ↦ ( 𝑥𝑁 , 𝑦𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ∈ V )
29 7 22 23 25 28 ovmpod ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝑁 matToPolyMat 𝑅 ) = ( 𝑚𝐵 ↦ ( 𝑥𝑁 , 𝑦𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) )
30 1 29 syl5eq ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → 𝑇 = ( 𝑚𝐵 ↦ ( 𝑥𝑁 , 𝑦𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) )