Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatbas.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
2 |
|
mat2pmatbas.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
mat2pmatbas.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
mat2pmatbas.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
5 |
|
mat2pmatbas.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
6 |
|
mat2pmatbas0.h |
⊢ 𝐻 = ( Base ‘ 𝐶 ) |
7 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
8 |
2
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
10 |
|
eqid |
⊢ ( mulGrp ‘ 𝐴 ) = ( mulGrp ‘ 𝐴 ) |
11 |
10
|
ringmgp |
⊢ ( 𝐴 ∈ Ring → ( mulGrp ‘ 𝐴 ) ∈ Mnd ) |
12 |
9 11
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( mulGrp ‘ 𝐴 ) ∈ Mnd ) |
13 |
4
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
14 |
7 13
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
15 |
5
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝐶 ∈ Ring ) |
16 |
14 15
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐶 ∈ Ring ) |
17 |
|
eqid |
⊢ ( mulGrp ‘ 𝐶 ) = ( mulGrp ‘ 𝐶 ) |
18 |
17
|
ringmgp |
⊢ ( 𝐶 ∈ Ring → ( mulGrp ‘ 𝐶 ) ∈ Mnd ) |
19 |
16 18
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( mulGrp ‘ 𝐶 ) ∈ Mnd ) |
20 |
1 2 3 4 5 6
|
mat2pmatf |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 ⟶ 𝐻 ) |
21 |
7 20
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 : 𝐵 ⟶ 𝐻 ) |
22 |
1 2 3 4 5 6
|
mat2pmatmul |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝐶 ) ( 𝑇 ‘ 𝑦 ) ) ) |
23 |
1 2 3 4 5 6
|
mat2pmat1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 ‘ ( 1r ‘ 𝐴 ) ) = ( 1r ‘ 𝐶 ) ) |
24 |
7 23
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑇 ‘ ( 1r ‘ 𝐴 ) ) = ( 1r ‘ 𝐶 ) ) |
25 |
21 22 24
|
3jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑇 : 𝐵 ⟶ 𝐻 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝐶 ) ( 𝑇 ‘ 𝑦 ) ) ∧ ( 𝑇 ‘ ( 1r ‘ 𝐴 ) ) = ( 1r ‘ 𝐶 ) ) ) |
26 |
10 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐴 ) ) |
27 |
17 6
|
mgpbas |
⊢ 𝐻 = ( Base ‘ ( mulGrp ‘ 𝐶 ) ) |
28 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
29 |
10 28
|
mgpplusg |
⊢ ( .r ‘ 𝐴 ) = ( +g ‘ ( mulGrp ‘ 𝐴 ) ) |
30 |
|
eqid |
⊢ ( .r ‘ 𝐶 ) = ( .r ‘ 𝐶 ) |
31 |
17 30
|
mgpplusg |
⊢ ( .r ‘ 𝐶 ) = ( +g ‘ ( mulGrp ‘ 𝐶 ) ) |
32 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
33 |
10 32
|
ringidval |
⊢ ( 1r ‘ 𝐴 ) = ( 0g ‘ ( mulGrp ‘ 𝐴 ) ) |
34 |
|
eqid |
⊢ ( 1r ‘ 𝐶 ) = ( 1r ‘ 𝐶 ) |
35 |
17 34
|
ringidval |
⊢ ( 1r ‘ 𝐶 ) = ( 0g ‘ ( mulGrp ‘ 𝐶 ) ) |
36 |
26 27 29 31 33 35
|
ismhm |
⊢ ( 𝑇 ∈ ( ( mulGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ 𝐶 ) ) ↔ ( ( ( mulGrp ‘ 𝐴 ) ∈ Mnd ∧ ( mulGrp ‘ 𝐶 ) ∈ Mnd ) ∧ ( 𝑇 : 𝐵 ⟶ 𝐻 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝐶 ) ( 𝑇 ‘ 𝑦 ) ) ∧ ( 𝑇 ‘ ( 1r ‘ 𝐴 ) ) = ( 1r ‘ 𝐶 ) ) ) ) |
37 |
12 19 25 36
|
syl21anbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( ( mulGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ 𝐶 ) ) ) |