| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat2pmatbas.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 2 |  | mat2pmatbas.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | mat2pmatbas.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | mat2pmatbas.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 5 |  | mat2pmatbas.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 6 |  | mat2pmatbas0.h | ⊢ 𝐻  =  ( Base ‘ 𝐶 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) | 
						
							| 8 | 2 7 | matmulr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( .r ‘ 𝐴 )  =  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) ) | 
						
							| 10 | 9 | oveqdr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑥 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) 𝑦 ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 12 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 13 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑅  ∈  Ring ) | 
						
							| 15 |  | simpll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑁  ∈  Fin ) | 
						
							| 16 | 3 | eleq2i | ⊢ ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 17 | 16 | biimpi | ⊢ ( 𝑥  ∈  𝐵  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 20 | 2 11 | matbas2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 22 | 19 21 | eleqtrrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 23 | 3 | eleq2i | ⊢ ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 24 | 23 | biimpi | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 25 | 24 | ad2antll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 26 | 20 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑦  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) )  ↔  𝑦  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑦  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) )  ↔  𝑦  ∈  ( Base ‘ 𝐴 ) ) ) | 
						
							| 28 | 25 27 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 29 | 7 11 12 14 15 15 15 22 28 | mamuval | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) 𝑦 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) ) ) ) | 
						
							| 30 | 10 29 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) ) ) ) | 
						
							| 31 | 30 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) ) ) ) | 
						
							| 32 |  | oveq1 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖 𝑥 𝑚 )  =  ( 𝑘 𝑥 𝑚 ) ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑗  =  𝑙  →  ( 𝑚 𝑦 𝑗 )  =  ( 𝑚 𝑦 𝑙 ) ) | 
						
							| 34 | 32 33 | oveqan12d | ⊢ ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑙 )  →  ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) )  =  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) | 
						
							| 35 | 34 | mpteq2dv | ⊢ ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑙 )  →  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) )  =  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑙 )  →  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) )  =  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  ( 𝑖  =  𝑘  ∧  𝑗  =  𝑙 ) )  →  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) )  =  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) | 
						
							| 38 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑘  ∈  𝑁 ) | 
						
							| 39 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑙  ∈  𝑁 ) | 
						
							| 40 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) )  ∈  V ) | 
						
							| 41 | 31 37 38 39 40 | ovmpod | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 )  =  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) | 
						
							| 43 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 44 |  | ringcmn | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  CMnd ) | 
						
							| 45 | 13 44 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  CMnd ) | 
						
							| 46 | 45 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑅  ∈  CMnd ) | 
						
							| 47 | 46 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑅  ∈  CMnd ) | 
						
							| 48 | 4 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 49 | 13 48 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Ring ) | 
						
							| 50 |  | ringmnd | ⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  Mnd ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Mnd ) | 
						
							| 52 | 51 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑃  ∈  Mnd ) | 
						
							| 53 | 52 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑃  ∈  Mnd ) | 
						
							| 54 | 15 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑁  ∈  Fin ) | 
						
							| 55 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 56 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 57 | 49 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  Ring ) | 
						
							| 58 | 4 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 59 | 13 58 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  LMod ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  LMod ) | 
						
							| 61 | 55 56 57 60 | asclghm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( algSc ‘ 𝑃 )  ∈  ( ( Scalar ‘ 𝑃 )  GrpHom  𝑃 ) ) | 
						
							| 62 | 4 | ply1sca | ⊢ ( 𝑅  ∈  CRing  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑅  GrpHom  𝑃 )  =  ( ( Scalar ‘ 𝑃 )  GrpHom  𝑃 ) ) | 
						
							| 65 | 61 64 | eleqtrrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( algSc ‘ 𝑃 )  ∈  ( 𝑅  GrpHom  𝑃 ) ) | 
						
							| 66 |  | ghmmhm | ⊢ ( ( algSc ‘ 𝑃 )  ∈  ( 𝑅  GrpHom  𝑃 )  →  ( algSc ‘ 𝑃 )  ∈  ( 𝑅  MndHom  𝑃 ) ) | 
						
							| 67 | 65 66 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( algSc ‘ 𝑃 )  ∈  ( 𝑅  MndHom  𝑃 ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( algSc ‘ 𝑃 )  ∈  ( 𝑅  MndHom  𝑃 ) ) | 
						
							| 69 | 68 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( algSc ‘ 𝑃 )  ∈  ( 𝑅  MndHom  𝑃 ) ) | 
						
							| 70 | 14 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 72 | 38 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑘  ∈  𝑁 ) | 
						
							| 73 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑚  ∈  𝑁 ) | 
						
							| 74 | 19 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 76 | 75 16 | sylibr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑥  ∈  𝐵 ) | 
						
							| 77 | 2 11 3 72 73 76 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( 𝑘 𝑥 𝑚 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 78 | 39 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑙  ∈  𝑁 ) | 
						
							| 79 | 2 | fveq2i | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 80 | 3 79 | eqtri | ⊢ 𝐵  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 81 | 80 | eleq2i | ⊢ ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 82 | 81 | biimpi | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 83 | 82 | ad2antll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 84 | 83 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑦  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑦  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 86 | 85 81 | sylibr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑦  ∈  𝐵 ) | 
						
							| 87 | 2 11 3 73 78 86 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( 𝑚 𝑦 𝑙 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 88 | 11 12 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑘 𝑥 𝑚 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑚 𝑦 𝑙 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 89 | 71 77 87 88 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 90 |  | eqid | ⊢ ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) )  =  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) | 
						
							| 91 |  | ovexd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) )  ∈  V ) | 
						
							| 92 |  | fvexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 93 | 90 54 91 92 | fsuppmptdm | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 94 | 11 43 47 53 54 69 89 93 | gsummptmhm | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) | 
						
							| 95 | 4 | ply1assa | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  AssAlg ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  AssAlg ) | 
						
							| 97 | 55 56 | asclrhm | ⊢ ( 𝑃  ∈  AssAlg  →  ( algSc ‘ 𝑃 )  ∈  ( ( Scalar ‘ 𝑃 )  RingHom  𝑃 ) ) | 
						
							| 98 | 96 97 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( algSc ‘ 𝑃 )  ∈  ( ( Scalar ‘ 𝑃 )  RingHom  𝑃 ) ) | 
						
							| 99 | 63 | oveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑅  RingHom  𝑃 )  =  ( ( Scalar ‘ 𝑃 )  RingHom  𝑃 ) ) | 
						
							| 100 | 98 99 | eleqtrrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( algSc ‘ 𝑃 )  ∈  ( 𝑅  RingHom  𝑃 ) ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( algSc ‘ 𝑃 )  ∈  ( 𝑅  RingHom  𝑃 ) ) | 
						
							| 102 | 101 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( algSc ‘ 𝑃 )  ∈  ( 𝑅  RingHom  𝑃 ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( algSc ‘ 𝑃 )  ∈  ( 𝑅  RingHom  𝑃 ) ) | 
						
							| 104 | 25 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑦  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑦  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 106 | 105 23 | sylibr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑦  ∈  𝐵 ) | 
						
							| 107 | 2 11 3 73 78 106 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( 𝑚 𝑦 𝑙 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 108 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 109 | 11 12 108 | rhmmul | ⊢ ( ( ( algSc ‘ 𝑃 )  ∈  ( 𝑅  RingHom  𝑃 )  ∧  ( 𝑘 𝑥 𝑚 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑚 𝑦 𝑙 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) )  =  ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) | 
						
							| 110 | 103 77 107 109 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) )  =  ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) | 
						
							| 111 | 110 | mpteq2dva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑚  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) )  =  ( 𝑚  ∈  𝑁  ↦  ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) ) | 
						
							| 112 | 111 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) | 
						
							| 113 | 42 94 112 | 3eqtr2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) )  =  ( 𝑃  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) | 
						
							| 114 | 113 | mpoeq3dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) ) )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) ) | 
						
							| 115 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 116 |  | eqid | ⊢ ( .r ‘ 𝐶 )  =  ( .r ‘ 𝐶 ) | 
						
							| 117 | 49 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑃  ∈  Ring ) | 
						
							| 118 |  | eqid | ⊢ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) | 
						
							| 119 |  | eqid | ⊢ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) | 
						
							| 120 | 14 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 121 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 122 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 123 |  | simp1rl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑥  ∈  𝐵 ) | 
						
							| 124 | 2 11 3 121 122 123 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑥 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 125 | 4 55 11 115 | ply1sclcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 𝑥 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 126 | 120 124 125 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 127 |  | simp1rr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑦  ∈  𝐵 ) | 
						
							| 128 | 2 11 3 121 122 127 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑦 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 129 | 4 55 11 115 | ply1sclcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 𝑦 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 130 | 120 128 129 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 131 |  | oveq12 | ⊢ ( ( 𝑘  =  𝑖  ∧  𝑚  =  𝑗 )  →  ( 𝑘 𝑥 𝑚 )  =  ( 𝑖 𝑥 𝑗 ) ) | 
						
							| 132 | 131 | fveq2d | ⊢ ( ( 𝑘  =  𝑖  ∧  𝑚  =  𝑗 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) | 
						
							| 133 | 132 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑘  =  𝑖  ∧  𝑚  =  𝑗 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) | 
						
							| 134 |  | oveq12 | ⊢ ( ( 𝑚  =  𝑖  ∧  𝑙  =  𝑗 )  →  ( 𝑚 𝑦 𝑙 )  =  ( 𝑖 𝑦 𝑗 ) ) | 
						
							| 135 | 134 | fveq2d | ⊢ ( ( 𝑚  =  𝑖  ∧  𝑙  =  𝑗 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑚  =  𝑖  ∧  𝑙  =  𝑗 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) | 
						
							| 137 |  | fvexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑘  ∈  𝑁  ∧  𝑚  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) )  ∈  V ) | 
						
							| 138 |  | fvexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑚  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) )  ∈  V ) | 
						
							| 139 | 5 115 116 108 117 15 118 119 126 130 133 136 137 138 | mpomatmul | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) ( .r ‘ 𝐶 ) ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) ) | 
						
							| 140 | 114 139 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) ) )  =  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) ( .r ‘ 𝐶 ) ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) ) ) | 
						
							| 141 | 2 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 142 | 13 141 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  Ring ) | 
						
							| 143 | 142 | anim1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐴  ∈  Ring  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 144 |  | 3anass | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝐴  ∈  Ring  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 145 | 143 144 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐴  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 146 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 147 | 3 146 | ringcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 148 | 145 147 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 149 | 1 2 3 4 55 | mat2pmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) ) ) ) | 
						
							| 150 | 15 14 148 149 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) ) ) ) | 
						
							| 151 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 152 | 151 | anim2i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 153 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑥  ∈  𝐵 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 154 | 152 153 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 155 | 1 2 3 4 55 | mat2pmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑥  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) ) | 
						
							| 156 | 154 155 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) ) | 
						
							| 157 |  | simpr | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 158 | 157 | anim2i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 159 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑦  ∈  𝐵 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 160 | 158 159 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 161 | 1 2 3 4 55 | mat2pmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑦  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑦 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) ) | 
						
							| 162 | 160 161 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑇 ‘ 𝑦 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) ) | 
						
							| 163 | 156 162 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝐶 ) ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) ( .r ‘ 𝐶 ) ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) ) ) | 
						
							| 164 | 140 150 163 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝐶 ) ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 165 | 164 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝐶 ) ( 𝑇 ‘ 𝑦 ) ) ) |