Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatfval.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
2 |
|
mat2pmatfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
mat2pmatfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
mat2pmatfval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
5 |
|
mat2pmatfval.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
6 |
1 2 3 4 5
|
mat2pmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑀 𝑦 ) ) ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ) → ( 𝑇 ‘ 𝑀 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑀 𝑦 ) ) ) ) |
8 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝑀 𝑦 ) = ( 𝑋 𝑀 𝑌 ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑆 ‘ ( 𝑥 𝑀 𝑦 ) ) = ( 𝑆 ‘ ( 𝑋 𝑀 𝑌 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑆 ‘ ( 𝑥 𝑀 𝑦 ) ) = ( 𝑆 ‘ ( 𝑋 𝑀 𝑌 ) ) ) |
11 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ) → 𝑋 ∈ 𝑁 ) |
12 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ) → 𝑌 ∈ 𝑁 ) |
13 |
|
fvexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑋 𝑀 𝑌 ) ) ∈ V ) |
14 |
7 10 11 12 13
|
ovmpod |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ) → ( 𝑋 ( 𝑇 ‘ 𝑀 ) 𝑌 ) = ( 𝑆 ‘ ( 𝑋 𝑀 𝑌 ) ) ) |