Metamath Proof Explorer


Theorem matbas0

Description: There is no matrix for a not finite dimension or a proper class as the underlying ring. (Contributed by AV, 28-Dec-2018)

Ref Expression
Assertion matbas0 ( ¬ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-mat Mat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet ⟨ ( .r ‘ ndx ) , ( 𝑟 maMul ⟨ 𝑛 , 𝑛 , 𝑛 ⟩ ) ⟩ ) )
2 1 mpondm0 ( ¬ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑁 Mat 𝑅 ) = ∅ )
3 2 fveq2d ( ¬ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ∅ ) )
4 base0 ∅ = ( Base ‘ ∅ )
5 3 4 eqtr4di ( ¬ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ∅ )