Description: A matrix is a function. (Contributed by Stefan O'Rear, 11-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | matbas2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
matbas2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
matbas2i.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
Assertion | matbas2i | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matbas2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
2 | matbas2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
3 | matbas2i.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
4 | id | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ 𝐵 ) | |
5 | 4 3 | eleqtrdi | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
6 | 1 3 | matrcl | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
7 | 1 2 | matbas2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
8 | 6 7 | syl | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
9 | 5 8 | eleqtrrd | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |