Metamath Proof Explorer


Theorem matecld

Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring, deduction form. (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses matecl.a 𝐴 = ( 𝑁 Mat 𝑅 )
matecl.k 𝐾 = ( Base ‘ 𝑅 )
matecld.b 𝐵 = ( Base ‘ 𝐴 )
matecld.i ( 𝜑𝐼𝑁 )
matecld.j ( 𝜑𝐽𝑁 )
matecld.m ( 𝜑𝑀𝐵 )
Assertion matecld ( 𝜑 → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 matecl.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 matecl.k 𝐾 = ( Base ‘ 𝑅 )
3 matecld.b 𝐵 = ( Base ‘ 𝐴 )
4 matecld.i ( 𝜑𝐼𝑁 )
5 matecld.j ( 𝜑𝐽𝑁 )
6 matecld.m ( 𝜑𝑀𝐵 )
7 6 3 eleqtrdi ( 𝜑𝑀 ∈ ( Base ‘ 𝐴 ) )
8 1 2 matecl ( ( 𝐼𝑁𝐽𝑁𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 )
9 4 5 7 8 syl3anc ( 𝜑 → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 )