Step |
Hyp |
Ref |
Expression |
1 |
|
matgsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
matgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
matgsum.z |
⊢ 0 = ( 0g ‘ 𝐴 ) |
4 |
|
matgsum.i |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
5 |
|
matgsum.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) |
6 |
|
matgsum.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
matgsum.f |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ∈ 𝐵 ) |
8 |
|
matgsum.w |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) finSupp 0 ) |
9 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ∈ V ) |
10 |
1
|
ovexi |
⊢ 𝐴 ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
12 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ∈ V ) |
13 |
|
eqid |
⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) |
14 |
1 13
|
matbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
15 |
4 6 14
|
syl2anc |
⊢ ( 𝜑 → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
16 |
15
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
17 |
1 13
|
matplusg |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( +g ‘ 𝐴 ) ) |
18 |
4 6 17
|
syl2anc |
⊢ ( 𝜑 → ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( +g ‘ 𝐴 ) ) |
19 |
18
|
eqcomd |
⊢ ( 𝜑 → ( +g ‘ 𝐴 ) = ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
20 |
9 11 12 16 19
|
gsumpropd |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) ) |
21 |
|
mpompts |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
22 |
21
|
a1i |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) |
23 |
22
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) |
26 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) |
27 |
|
xpfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
28 |
4 4 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 × 𝑁 ) ∈ Fin ) |
29 |
7 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ∈ ( Base ‘ 𝐴 ) ) |
30 |
21
|
eqcomi |
⊢ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) |
31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) |
32 |
4 6
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
34 |
33 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
35 |
29 31 34
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ∈ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
36 |
30
|
mpteq2i |
⊢ ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) |
37 |
3
|
eqcomi |
⊢ ( 0g ‘ 𝐴 ) = 0 |
38 |
8 36 37
|
3brtr4g |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
39 |
1 13
|
mat0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 0g ‘ 𝐴 ) ) |
40 |
4 6 39
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 0g ‘ 𝐴 ) ) |
41 |
38 40
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) finSupp ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
42 |
13 25 26 28 5 6 35 41
|
frlmgsum |
⊢ ( 𝜑 → ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) ) |
43 |
24 42
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) ) |
44 |
|
fvex |
⊢ ( 2nd ‘ 𝑧 ) ∈ V |
45 |
|
csbov2g |
⊢ ( ( 2nd ‘ 𝑧 ) ∈ V → ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
46 |
44 45
|
ax-mp |
⊢ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
47 |
46
|
csbeq2i |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
48 |
|
fvex |
⊢ ( 1st ‘ 𝑧 ) ∈ V |
49 |
|
csbov2g |
⊢ ( ( 1st ‘ 𝑧 ) ∈ V → ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
50 |
48 49
|
ax-mp |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
51 |
|
csbmpt2 |
⊢ ( ( 2nd ‘ 𝑧 ) ∈ V → ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) |
52 |
44 51
|
ax-mp |
⊢ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
53 |
52
|
csbeq2i |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
54 |
|
csbmpt2 |
⊢ ( ( 1st ‘ 𝑧 ) ∈ V → ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) |
55 |
48 54
|
ax-mp |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
56 |
53 55
|
eqtri |
⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
57 |
56
|
oveq2i |
⊢ ( 𝑅 Σg ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) |
58 |
47 50 57
|
3eqtrri |
⊢ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) = ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
59 |
58
|
mpteq2i |
⊢ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
60 |
|
mpompts |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
61 |
59 60
|
eqtr4i |
⊢ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
62 |
61
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
63 |
20 43 62
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |