Step |
Hyp |
Ref |
Expression |
1 |
|
madetsumid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
madetsumid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
madetsumid.u |
⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
3 4
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑈 ) |
6 |
3
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝑈 ∈ CMnd ) |
7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑈 ∈ CMnd ) |
8 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
10 |
9
|
simpld |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
11 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
12 |
1 4 2
|
matbas2i |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
13 |
|
elmapi |
⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
14 |
11 12 13
|
3syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑟 ∈ 𝑁 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
16 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑟 ∈ 𝑁 ) → 𝑟 ∈ 𝑁 ) |
17 |
15 16 16
|
fovrnd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑟 ∈ 𝑁 ) → ( 𝑟 𝑀 𝑟 ) ∈ ( Base ‘ 𝑅 ) ) |
18 |
17
|
ralrimiva |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∀ 𝑟 ∈ 𝑁 ( 𝑟 𝑀 𝑟 ) ∈ ( Base ‘ 𝑅 ) ) |
19 |
5 7 10 18
|
gsummptcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑈 Σg ( 𝑟 ∈ 𝑁 ↦ ( 𝑟 𝑀 𝑟 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |