| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matinv.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | matinv.j | ⊢ 𝐽  =  ( 𝑁  maAdju  𝑅 ) | 
						
							| 3 |  | matinv.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 4 |  | matinv.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 5 |  | matinv.u | ⊢ 𝑈  =  ( Unit ‘ 𝐴 ) | 
						
							| 6 |  | matinv.v | ⊢ 𝑉  =  ( Unit ‘ 𝑅 ) | 
						
							| 7 |  | matinv.h | ⊢ 𝐻  =  ( invr ‘ 𝑅 ) | 
						
							| 8 |  | matinv.i | ⊢ 𝐼  =  ( invr ‘ 𝐴 ) | 
						
							| 9 |  | matinv.t | ⊢  ∙   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 10 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 11 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 12 | 1 4 | matrcl | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( 𝑀  ∈  𝐵  →  𝑁  ∈  Fin ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝑁  ∈  Fin ) | 
						
							| 15 |  | simp1 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝑅  ∈  CRing ) | 
						
							| 16 | 1 | matassa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  AssAlg ) | 
						
							| 17 | 14 15 16 | syl2anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝐴  ∈  AssAlg ) | 
						
							| 18 |  | assaring | ⊢ ( 𝐴  ∈  AssAlg  →  𝐴  ∈  Ring ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝐴  ∈  Ring ) | 
						
							| 20 |  | simp2 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝑀  ∈  𝐵 ) | 
						
							| 21 |  | assalmod | ⊢ ( 𝐴  ∈  AssAlg  →  𝐴  ∈  LMod ) | 
						
							| 22 | 17 21 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝐴  ∈  LMod ) | 
						
							| 23 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝑅  ∈  Ring ) | 
						
							| 25 |  | simp3 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 27 | 6 7 26 | ringinvcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 28 | 24 25 27 | syl2anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 1 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 30 | 14 15 29 | syl2anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 32 | 28 31 | eleqtrd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 33 | 1 2 4 | maduf | ⊢ ( 𝑅  ∈  CRing  →  𝐽 : 𝐵 ⟶ 𝐵 ) | 
						
							| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  𝐽 : 𝐵 ⟶ 𝐵 ) | 
						
							| 35 | 34 20 | ffvelcdmd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝐽 ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 36 |  | eqid | ⊢ ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝐴 ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) )  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 38 | 4 36 9 37 | lmodvscl | ⊢ ( ( 𝐴  ∈  LMod  ∧  ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ∧  ( 𝐽 ‘ 𝑀 )  ∈  𝐵 )  →  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝐽 ‘ 𝑀 ) )  ∈  𝐵 ) | 
						
							| 39 | 22 32 35 38 | syl3anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝐽 ‘ 𝑀 ) )  ∈  𝐵 ) | 
						
							| 40 | 4 36 37 9 10 | assaassr | ⊢ ( ( 𝐴  ∈  AssAlg  ∧  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ∧  𝑀  ∈  𝐵  ∧  ( 𝐽 ‘ 𝑀 )  ∈  𝐵 ) )  →  ( 𝑀 ( .r ‘ 𝐴 ) ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝐽 ‘ 𝑀 ) ) )  =  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) ) ) | 
						
							| 41 | 17 32 20 35 40 | syl13anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝑀 ( .r ‘ 𝐴 ) ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝐽 ‘ 𝑀 ) ) )  =  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) ) ) | 
						
							| 42 | 1 4 2 3 11 10 9 | madurid | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) )  =  ( ( 𝐷 ‘ 𝑀 )  ∙  ( 1r ‘ 𝐴 ) ) ) | 
						
							| 43 | 20 15 42 | syl2anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) )  =  ( ( 𝐷 ‘ 𝑀 )  ∙  ( 1r ‘ 𝐴 ) ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) )  =  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( ( 𝐷 ‘ 𝑀 )  ∙  ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 45 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 46 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 47 | 6 7 45 46 | unitlinv | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 48 | 24 25 47 | syl2anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 49 | 30 | fveq2d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( .r ‘ 𝑅 )  =  ( .r ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 50 | 49 | oveqd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) )  =  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) ) | 
						
							| 51 | 30 | fveq2d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 1r ‘ 𝑅 )  =  ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 52 | 48 50 51 | 3eqtr3d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 53 | 52 | oveq1d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) )  ∙  ( 1r ‘ 𝐴 ) )  =  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) )  ∙  ( 1r ‘ 𝐴 ) ) ) | 
						
							| 54 | 26 6 | unitcl | ⊢ ( ( 𝐷 ‘ 𝑀 )  ∈  𝑉  →  ( 𝐷 ‘ 𝑀 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 55 | 54 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝐷 ‘ 𝑀 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 56 | 55 31 | eleqtrd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝐷 ‘ 𝑀 )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 57 | 4 11 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 58 | 19 57 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 59 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝐴 ) )  =  ( .r ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 60 | 4 36 9 37 59 | lmodvsass | ⊢ ( ( 𝐴  ∈  LMod  ∧  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ∧  ( 𝐷 ‘ 𝑀 )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ∧  ( 1r ‘ 𝐴 )  ∈  𝐵 ) )  →  ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) )  ∙  ( 1r ‘ 𝐴 ) )  =  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( ( 𝐷 ‘ 𝑀 )  ∙  ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 61 | 22 32 56 58 60 | syl13anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) )  ∙  ( 1r ‘ 𝐴 ) )  =  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( ( 𝐷 ‘ 𝑀 )  ∙  ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 62 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝐴 ) )  =  ( 1r ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 63 | 4 36 9 62 | lmodvs1 | ⊢ ( ( 𝐴  ∈  LMod  ∧  ( 1r ‘ 𝐴 )  ∈  𝐵 )  →  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) )  ∙  ( 1r ‘ 𝐴 ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 64 | 22 58 63 | syl2anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( 1r ‘ ( Scalar ‘ 𝐴 ) )  ∙  ( 1r ‘ 𝐴 ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 65 | 53 61 64 | 3eqtr3d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( ( 𝐷 ‘ 𝑀 )  ∙  ( 1r ‘ 𝐴 ) ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 66 | 41 44 65 | 3eqtrd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝑀 ( .r ‘ 𝐴 ) ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝐽 ‘ 𝑀 ) ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 67 | 4 36 37 9 10 | assaass | ⊢ ( ( 𝐴  ∈  AssAlg  ∧  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ∧  ( 𝐽 ‘ 𝑀 )  ∈  𝐵  ∧  𝑀  ∈  𝐵 ) )  →  ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝐽 ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑀 )  =  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) ) | 
						
							| 68 | 17 32 35 20 67 | syl13anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝐽 ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑀 )  =  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) ) | 
						
							| 69 | 1 4 2 3 11 10 9 | madulid | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 )  =  ( ( 𝐷 ‘ 𝑀 )  ∙  ( 1r ‘ 𝐴 ) ) ) | 
						
							| 70 | 20 15 69 | syl2anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 )  =  ( ( 𝐷 ‘ 𝑀 )  ∙  ( 1r ‘ 𝐴 ) ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) )  =  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( ( 𝐷 ‘ 𝑀 )  ∙  ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 72 | 68 71 65 | 3eqtrd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝐽 ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑀 )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 73 | 4 10 11 5 8 19 20 39 66 72 | invrvald | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑀 )  ∈  𝑉 )  →  ( 𝑀  ∈  𝑈  ∧  ( 𝐼 ‘ 𝑀 )  =  ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) )  ∙  ( 𝐽 ‘ 𝑀 ) ) ) ) |