Step |
Hyp |
Ref |
Expression |
1 |
|
matinv.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
matinv.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑅 ) |
3 |
|
matinv.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
4 |
|
matinv.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
5 |
|
matinv.u |
⊢ 𝑈 = ( Unit ‘ 𝐴 ) |
6 |
|
matinv.v |
⊢ 𝑉 = ( Unit ‘ 𝑅 ) |
7 |
|
matinv.h |
⊢ 𝐻 = ( invr ‘ 𝑅 ) |
8 |
|
matinv.i |
⊢ 𝐼 = ( invr ‘ 𝐴 ) |
9 |
|
matinv.t |
⊢ ∙ = ( ·𝑠 ‘ 𝐴 ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
12 |
1 4
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
13 |
12
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
15 |
|
simp1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑅 ∈ CRing ) |
16 |
1
|
matassa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ AssAlg ) |
17 |
14 15 16
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝐴 ∈ AssAlg ) |
18 |
|
assaring |
⊢ ( 𝐴 ∈ AssAlg → 𝐴 ∈ Ring ) |
19 |
17 18
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝐴 ∈ Ring ) |
20 |
|
simp2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑀 ∈ 𝐵 ) |
21 |
|
assalmod |
⊢ ( 𝐴 ∈ AssAlg → 𝐴 ∈ LMod ) |
22 |
17 21
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝐴 ∈ LMod ) |
23 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑅 ∈ Ring ) |
25 |
|
simp3 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
27 |
6 7 26
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑅 ) ) |
28 |
24 25 27
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑅 ) ) |
29 |
1
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
30 |
14 15 29
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
31 |
30
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
32 |
28 31
|
eleqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
33 |
1 2 4
|
maduf |
⊢ ( 𝑅 ∈ CRing → 𝐽 : 𝐵 ⟶ 𝐵 ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝐽 : 𝐵 ⟶ 𝐵 ) |
35 |
34 20
|
ffvelrnd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ) |
36 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
37 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
38 |
4 36 9 37
|
lmodvscl |
⊢ ( ( 𝐴 ∈ LMod ∧ ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ∈ 𝐵 ) |
39 |
22 32 35 38
|
syl3anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ∈ 𝐵 ) |
40 |
4 36 37 9 10
|
assaassr |
⊢ ( ( 𝐴 ∈ AssAlg ∧ ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ) ) → ( 𝑀 ( .r ‘ 𝐴 ) ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) ) ) |
41 |
17 32 20 35 40
|
syl13anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝑀 ( .r ‘ 𝐴 ) ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) ) ) |
42 |
1 4 2 3 11 10 9
|
madurid |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) = ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) |
43 |
20 15 42
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) = ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) |
44 |
43
|
oveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) ) |
45 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
46 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
47 |
6 7 45 46
|
unitlinv |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) |
48 |
24 25 47
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) |
49 |
30
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( .r ‘ 𝑅 ) = ( .r ‘ ( Scalar ‘ 𝐴 ) ) ) |
50 |
49
|
oveqd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) ) |
51 |
30
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ) |
52 |
48 50 51
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ) |
53 |
52
|
oveq1d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) ∙ ( 1r ‘ 𝐴 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ∙ ( 1r ‘ 𝐴 ) ) ) |
54 |
26 6
|
unitcl |
⊢ ( ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 → ( 𝐷 ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
55 |
54
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐷 ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
56 |
55 31
|
eleqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐷 ‘ 𝑀 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
57 |
4 11
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
58 |
19 57
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
59 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝐴 ) ) = ( .r ‘ ( Scalar ‘ 𝐴 ) ) |
60 |
4 36 9 37 59
|
lmodvsass |
⊢ ( ( 𝐴 ∈ LMod ∧ ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ 𝑀 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 1r ‘ 𝐴 ) ∈ 𝐵 ) ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) ∙ ( 1r ‘ 𝐴 ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) ) |
61 |
22 32 56 58 60
|
syl13anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) ∙ ( 1r ‘ 𝐴 ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) ) |
62 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝐴 ) ) = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) |
63 |
4 36 9 62
|
lmodvs1 |
⊢ ( ( 𝐴 ∈ LMod ∧ ( 1r ‘ 𝐴 ) ∈ 𝐵 ) → ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ∙ ( 1r ‘ 𝐴 ) ) = ( 1r ‘ 𝐴 ) ) |
64 |
22 58 63
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ∙ ( 1r ‘ 𝐴 ) ) = ( 1r ‘ 𝐴 ) ) |
65 |
53 61 64
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) = ( 1r ‘ 𝐴 ) ) |
66 |
41 44 65
|
3eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝑀 ( .r ‘ 𝐴 ) ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ) = ( 1r ‘ 𝐴 ) ) |
67 |
4 36 37 9 10
|
assaass |
⊢ ( ( 𝐴 ∈ AssAlg ∧ ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ∧ 𝑀 ∈ 𝐵 ) ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑀 ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) ) |
68 |
17 32 35 20 67
|
syl13anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑀 ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) ) |
69 |
1 4 2 3 11 10 9
|
madulid |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) = ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) |
70 |
20 15 69
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) = ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) |
71 |
70
|
oveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) ) |
72 |
68 71 65
|
3eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑀 ) = ( 1r ‘ 𝐴 ) ) |
73 |
4 10 11 5 8 19 20 39 66 72
|
invrvald |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝑀 ∈ 𝑈 ∧ ( 𝐼 ‘ 𝑀 ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ) ) |