Description: The matrix ring has the same additive inverse as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | matbas.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
matbas.g | ⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | ||
Assertion | matinvg | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( invg ‘ 𝐺 ) = ( invg ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matbas.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
2 | matbas.g | ⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
3 | eqidd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
4 | 1 2 | matbas | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐴 ) ) |
5 | 1 2 | matplusg | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐴 ) ) |
6 | 5 | oveqdr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
7 | 3 4 6 | grpinvpropd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( invg ‘ 𝐺 ) = ( invg ‘ 𝐴 ) ) |