Step |
Hyp |
Ref |
Expression |
1 |
|
matmulr.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
matmulr.t |
⊢ · = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) |
3 |
|
ovex |
⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ∈ V |
4 |
2
|
ovexi |
⊢ · ∈ V |
5 |
3 4
|
pm3.2i |
⊢ ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ∈ V ∧ · ∈ V ) |
6 |
|
mulrid |
⊢ .r = Slot ( .r ‘ ndx ) |
7 |
6
|
setsid |
⊢ ( ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ∈ V ∧ · ∈ V ) → · = ( .r ‘ ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) ) |
8 |
5 7
|
mp1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → · = ( .r ‘ ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) ) |
9 |
|
eqid |
⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) |
10 |
1 9 2
|
matval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝐴 = ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( .r ‘ 𝐴 ) = ( .r ‘ ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) ) |
12 |
8 11
|
eqtr4d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → · = ( .r ‘ 𝐴 ) ) |